首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4686篇
  免费   1618篇
  国内免费   2934篇
测绘学   48篇
大气科学   5468篇
地球物理   730篇
地质学   1374篇
海洋学   406篇
天文学   22篇
综合类   207篇
自然地理   983篇
  2024年   79篇
  2023年   149篇
  2022年   240篇
  2021年   281篇
  2020年   297篇
  2019年   405篇
  2018年   284篇
  2017年   318篇
  2016年   303篇
  2015年   354篇
  2014年   451篇
  2013年   516篇
  2012年   473篇
  2011年   457篇
  2010年   338篇
  2009年   418篇
  2008年   412篇
  2007年   507篇
  2006年   443篇
  2005年   374篇
  2004年   297篇
  2003年   275篇
  2002年   223篇
  2001年   241篇
  2000年   233篇
  1999年   165篇
  1998年   132篇
  1997年   117篇
  1996年   94篇
  1995年   83篇
  1994年   68篇
  1993年   57篇
  1992年   30篇
  1991年   38篇
  1990年   19篇
  1989年   18篇
  1988年   17篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1977年   3篇
  1954年   1篇
排序方式: 共有9238条查询结果,搜索用时 15 毫秒
121.
1. IntroductionAs well known, Kuroshio is a famous and strongwest boundary current in the North Pacific. It trans-fers enormous energy from the low latitudes to themid-high latitudes and releases huge heat flux to theatmosphere above (Hsiung, 1985). The variation ofKuroshio exerts great influence on weather and cli-mate in East Asian.During 1950-60s, Lü (1950, 1964) found that thewestern North Pacific SSTA had a close relation withsummer rainfall in China. In the 1970s, evidencesshowed…  相似文献   
122.
The contribution of areal precipitation of the catchment from Cuntan to Yichang (Three Gorges area) to eight flood peaks of the Upper Yangtze River (the upper reaches of the Yangtze River) is diagnosed for 1998 flood season. A rainfall-runoff model is employed to simulate runoffs of-this catchment. Comparison of observed and simulated runoffs shows that the rainfall-runoff model has a good capability to simulate the runoff over a large-scale river and the results describe the eight flood peaks very well. Forecast results are closely associated with the sensitivity of the model to rainfall and the calibration processes. Other reasons leading to simulation errors are further discussed.  相似文献   
123.
1. IntroductionAccording to the reconstruction of paleo-temperature based on δ18 O data of ice core in theGreenland (see Jouzel et al., 1987; Grootes et al.,1993; Blunier and Brook, 2001), the current inter-glacial epoch, the Holocene, began at ca. 11.5 thou-sand years before present (ka BP). Multiple sources(pollen data, macrofossils) reveal that the summer cli-mate in the Northern Hemisphere was warmer in theearly to middle Holocene (MH) (ca. 8-6ka BP) relativeto the present climate. …  相似文献   
124.
During the 20th century many floods of different intensity and extent have occurred on the Odra River and its tributaries. On the basis of long-term water level observations five major floods, that affected the entire upper and middle Odra River basin, were chosen for further analysis: June 1902, July 1903, August 1977, August 1985 and July 1997. However, hazardous floods were not only those that covered the whole upper and middle Odra River basin, so several local floods were also studied. Detailed historical analysis was made of meteorological conditions, with special emphasis on precipitation patterns and amounts. Then, on the basis of flood peak time occurrence, the stages of flood wave formation were formulated. The natural flood wave of the Odra River is often modified by hydro-technical infrastructure, the development and improvement of which is briefly described in this paper. In conclusion, a comparison of flood wave characteristics such as rising time, falling time, duration, peak flow and volume is presented.  相似文献   
125.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
126.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
127.
The accurate measurement of precipitation is essential to understanding regional hydrological processes and hydrological cycling. Quantification of precipitation over remote regions such as the Tibetan Plateau is highly unreliable because of the scarcity of rain gauges. The objective of this study is to evaluate the performance of the satellite precipitation product of tropical rainfall measuring mission (TRMM) 3B42 v7 at daily, weekly, monthly, and seasonal scales. Comparison between TRMM grid precipitation and point‐based rain gauge precipitation was conducted using nearest neighbour and bilinear weighted interpolation methods. The results showed that the TRMM product could not capture daily precipitation well due to some rainfall events being missed at short time scales but provided reasonably good precipitation data at weekly, monthly, and seasonal scales. TRMM tended to underestimate the precipitation of small rainfall events (less than 1 mm/day), while it overestimated the precipitation of large rainfall events (greater than 20 mm/day). Consequently, TRMM showed better performance in the summer monsoon season than in the winter season. Through comparison, it was also found that the bilinear weighted interpolation method performs better than the nearest neighbour method in TRMM precipitation extraction.  相似文献   
128.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
129.
130.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号