首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4686篇
  免费   1618篇
  国内免费   2934篇
测绘学   48篇
大气科学   5468篇
地球物理   730篇
地质学   1374篇
海洋学   406篇
天文学   22篇
综合类   207篇
自然地理   983篇
  2024年   79篇
  2023年   149篇
  2022年   240篇
  2021年   281篇
  2020年   297篇
  2019年   405篇
  2018年   284篇
  2017年   318篇
  2016年   303篇
  2015年   354篇
  2014年   451篇
  2013年   516篇
  2012年   473篇
  2011年   457篇
  2010年   338篇
  2009年   418篇
  2008年   412篇
  2007年   507篇
  2006年   443篇
  2005年   374篇
  2004年   297篇
  2003年   275篇
  2002年   223篇
  2001年   241篇
  2000年   233篇
  1999年   165篇
  1998年   132篇
  1997年   117篇
  1996年   94篇
  1995年   83篇
  1994年   68篇
  1993年   57篇
  1992年   30篇
  1991年   38篇
  1990年   19篇
  1989年   18篇
  1988年   17篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1977年   3篇
  1954年   1篇
排序方式: 共有9238条查询结果,搜索用时 15 毫秒
111.
Sanyal  Joy  Lu  X. X. 《Natural Hazards》2004,33(2):283-301
The conventional means to record hydrological parameters of aflood often fail to record an extreme event. Remote sensingtechnology along with geographic information system (GIS)has become the key tool for flood monitoring in recent years.Development in this field has evolved from optical to radarremote sensing, which has provided all weather capabilitycompared to the optical sensors for the purpose of flood mapping.The central focus in this field revolves around delineation of floodzones and preparation of flood hazard maps for the vulnerable areas.In this exercise flood depth is considered crucial for flood hazardmapping and a digital elevation model (DEM) is considered to bethe most effective means to estimate flood depth from remotelysensed or hydrological data. In a flat terrain accuracy of floodestimation depends primarily on the resolution of the DEM. Riverflooding in the developing countries of monsoon Asia is very acutebecause of their heavy dependence on agriculture but any floodestimation or hazard mapping attempt in this region is handicappedby poor availability of high resolution DEMs. This paper presents areview of application of remote sensing and GIS in flood managementwith particular focus on the developing countries of Asia.  相似文献   
112.
Modeling landscape with high-resolution digital elevation model (DEM) in a geographic information system can provide essential morphological and structural information for modeling surface processes such as geomorphologic process and water systems. This paper introduces several DEM-based spatial analysis processes applied to characterize spatial distribution and their interactions of ground and surface water systems in the Greater Toronto Area (GTA), Canada. The stream networks and drainage basin systems were derived from the DEM with 30 m resolution and the regularities of the surface stream and drainage patterns were modeled from a statistical/multifractal point of view. Together with the elevation and slope of topography, other attributes defmed from modeling the stream system, and drainage networks were used to associate geological, hydrological and topographical features to water flow in river systems and the spatial locations of artesian aquifers in the study area. Stream flow data derived from daily flow measurements recorded at river gauging stations for multi-year period were decomposed into “drainage-area dependent“ and “drainage-area independent“ flow components by two-step “frequency“ and “spatial“ analysis processes. The latter component was further demonstrated to relate most likely to the ground water discharge. An independent analysis was conducted to model the distribution of aquifers with information derived from the records of water wells. The focus was given on quantification of the likelihood of ground water discharge to river and ponds through flowing wells, springs and seepages. It has been shown that the Oak Ridges Moraine (ORM) is a unique glacial deposit that serves as a recharge layer and that the aquifers in the ORM underlain by Hilton Tills and later deposits exposed near the steep slope zone of the ridges of ORM provide significant discharge to the surface water systems (river flow and ponds) through flowing wells, springs and seepages. Various statistics (cross- and auto-correlation coefficients, fractal R/S exponent) were used in conjunction with GIS to demonstrate the influence of land types, topography and geometry of drainage basins on short- and long-term persistence of river flows as well as responding time to precipitation events. The current study has provided not only insight in understanding the interaction of water systems in the GTA, but also a base for further establishment of an on-line GIS system for predicting spatial-temporal changes of river flow and groundwater level in the GTA.  相似文献   
113.
interpretationofpaleoclimaticrecordsinicecore(Dansgaardetal.,1969;Rozanskietal.,1997;Yao,1999;Thompsonetal.,2000).SincethefirstdeepicecorewasdrilledinGreenlandin1966(Dansgaardetal.,1969),hundredsoficecoreswereobtainedsuccessivelyfromicesheetsinAntarcticaandArctic,andmountainglaciersatmid-highlatitudes,fundedbynumerousresearchprogramsonglobalclimateandenvironmentalchange.Theseicecoresprovideuniqueandvaluablefirst-handinformationinrecoveringglobalpaleoenvironmentalrecordsandforecastingfuturecl…  相似文献   
114.
Linear correlations between seasonal and inter-annual measures of meteorological variables and normalized difference vegetation index (NDVI) are calculated at six nearby yet distinct vegetation communities in semi-arid New Mexico, USA Monsoon season (June–September) precipitation shows considerable positive correlation with NDVI values from the contemporaneous summer, following spring, and following summer. Non-monsoon precipitation (October–May), temperature, and wind display both positive and negative correlations with NDVI values. These meteorological variables influence NDVI variability at different seasons and time lags. Thus vegetation responds to short-term climate variability in complex ways and serves as a source of memory for the climate system.  相似文献   
115.
This study investigates potential changes in nitrogen and phosphorus loads under a warmer and wetter climate, urban growth, and combined changes in the Conestoga River Basin and its five subbasins in southeastern Pennsylvania. A GIS‐based hydrochemical model was employed for assessing the sensitivity of the basins to the projected changes in 2030. Under the HadCM2 climate change scenario, mean annual nitrogen and phosphorus loads are expected to increase, with great increases in spring but slight decreases in fall primarily because of changes in monthly precipitation. When climate change and urbanization occur concurrently, mean annual nitrogen loads further increase by 50% in the most urbanizing subbasin. Point source nitrogen control could mitigate negative effects of climate and land use changes, reducing mean annual nitrogen loads to the contemporary baseline level.  相似文献   
116.
利用太原地区发生的798个地质灾害个例和汛期降水资料,从地质环境背景着手,在地理信息系统(MAPGIS)支持下,对太原地质灾害危险性区划和诱发因素进行了系统研究。提出了精细的地质环境概率量化评价方法,得出了地质灾害影响因素的重要结论。建立了地质灾害预报模型,制定了预报等级标准和预报规则。经业务试验,预报结果与实况基本吻合。  相似文献   
117.
本文通过对汾河流域40a气象、水文资料的分析,结合现阶段人工增雨技术的研究,以增加水库蓄水量为目的,设计科学可行的人工增雨方案,并对可能的投入和预期产生的效益进行分析研究,为通过人工增雨增加水库蓄水量提供科学依据。  相似文献   
118.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   
119.
Tropical Precipitation Estimated by GPCP and TRMM PR Observations   总被引:7,自引:0,他引:7  
In this study, tropical monthly mean precipitation estimated by the latest Global Precipitation Climatology Project (GPCP) version 2 dataset and Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are compared in temporal and spatial scales in order to comprehend tropical rainfall climatologically. Reasons for the rainfall differences derived from both datasets are discussed. Results show that GPCP and TRMM PR datasets present similar distribution patterns over the Tropics but with some differences in amplitude and location. Generally, the average difference over the ocean of about 0.5 mm d^-1 is larger than that of about 0.1 mm d^-1 over land. Results also show that GPCP tends to underestimate the monthly precipitation over the land region with sparse rain gauges in contrast to regions with a higher density of rain gauge stations. A Probability Distribution Function (PDF) analysis indicates that the GPCP rain rate at its maximum PDF is generally consistent with the TRMM PR rain rate as the latter is less than 8 mm d^-1. When the TRMM PR rain rate is greater than 8 mm d^-1, the GPCP rain rate at its maximum PDF is less by at least 1 mm d^-1 compared to TRMM PR estimates. Results also show an absolute bias of less than 1 mm d^-1 between the two datasets when the rain rate is less than 10 mm d^-1. A large relative bias of the two datasets occurs at weak and heavy rain rates.  相似文献   
120.
不同降水天气系统自然降水特征及火箭人工增雨潜力分析   总被引:4,自引:1,他引:4  
统计分析了1981~2000年20年中15种降水天气系统影响下河北地区自然降水特征,并对火箭人工增雨的潜力进行了初步分析。统计分析表明:西来槽类、高空低涡类、冷锋、切变线和副高后部等天气系统是影响河北地区的主要降水系统,其降雨量和降雨日数占到了90%以上;不同的天气系统在不同季节对降水的贡献有所不同,其中西来槽类的降雨量和降雨日数均居首位,开展人工增雨催化作业机会最多;夏季降水系统最强,云水资源最为丰富,人工增雨潜力很大,是开展火箭人工增雨催化作业的最佳季节,春秋两季增雨潜力明显比夏季小,冬季最小;倒槽、副高后部、台风低压、高空低涡类和气旋类等系统最强,日降雨量和单位面积降雨量明显比其它系统大,尤其对蓄水型火箭增雨作业十分有利。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号