首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   6篇
  国内免费   3篇
测绘学   4篇
地球物理   64篇
地质学   19篇
海洋学   71篇
综合类   1篇
自然地理   4篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   10篇
  2006年   11篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1984年   1篇
排序方式: 共有163条查询结果,搜索用时 562 毫秒
141.
This work presents an experimental study of a submerged plate used as a breakwater for coastal areas protection. Questions addressed concern the influence of current on the reflective power of the plate, and its influence on the hydrodynamic loads exerted on it. Results concern both monochromatic and irregular waves. Generally speaking, an influence of the current is found, changing the reflecting power of the structure up to 50%. A homogenized behavior of the loads and moments is found in the presence of currents, meaning that the load values become less sensitive to the frequency. Furthermore, the influence of waves reflected by the wave absorber, representing partially reflective conditions at the shore, is found to be of same order in the absence of current. In any case, the linear behavior of the breakwater is emphasized through the irregular waves approach.  相似文献   
142.
The phenomenon of the wave, seabed and structure interactions has attracted great attentions from coastal geotechnical engineers in recent years. Most previous investigations have based on individual approaches, which focused on either flow region or seabed domain. In this study, an integrated model (PORO-WSSI II), based on the Volume-Averaged/Reynolds-Averaged Navier-Stokes (VARANS) equations and Biot's poro-elastic theory, is developed to investigate the mechanism of the wave-permeable structure-porous seabed interactions. The new model is verified with the previous experimental data. Based on the present model, parametric studies have been carried out to investigate the influences of wave, soil and structure parameters on the wave-induced pore pressure. Numerical results indicated: (i) longer wave period and larger wave height will obviously induce a higher magnitude of pore pressure at the leading edge of a breakwater; (ii) after a full wave-structure interaction, the magnitude of pore pressure below the lee side of a breakwater decreases with an increasing structure porosity while it varies dramatically with a change of structure height; and (iii) the seabed thickness, soil permeability and the degree of saturation can also significantly affect the dynamic soil behaviour.  相似文献   
143.
Analytic solution of long wave propagation over a submerged hump   总被引:1,自引:0,他引:1  
A new analytical solution of the long wave refraction by a submerged circular hump is presented. The geometry of the hump is assumed to be axisymmetric and be described by a power function in the radial direction with arbitrary values of both the exponent and the scaling factor. The submergence of the hump is also variable. The water surface elevation governed by the long wave version of the mild slope wave equation is solved by separation of variables, and a series solution of the Frobenius type is obtained. The solution is shown to be valid when the hump is sufficiently submerged or is of a relatively small height. Matching method is employed to illustrate the refraction of long waves under given conditions of incidence. Effects of the shape, the scale, and the submergence of the hump on wave refraction are discussed.  相似文献   
144.
Wen-Hui Cheng   《Ocean Engineering》2004,31(5-6):693-707
Currently, most submerged bodies use the long-baseline acoustic position system (LBL) to identify the navigation position for submerging. A precise navigation position is always the target pursued by underwater technology. The conventional long-baseline acoustic position systems normally use Kalman filter correction to handle the problem of positional errors. This article proposes a new modification, which is based on the periodically measured actual navigation distance, and associated with the three-dimensional geometrical relations between the transponder on the seabed and the navigation distance. This new modification employs the iterative approximation to modify the errors of the measured navigation position from the conventional long-baseline acoustic position system. In order to verify the availability of the modified model by the essay, the study uses the navigation position for an underwater surveying submerged body as the study object. After the numerical simulation analysis, the result shows that the modification was presented by the article can only use very few iterations to precisely modify the errors of the measured navigation position from the conventional long-baseline acoustic position system, which is highly applicable for positioning in long-term and long-distance submersion. Moreover, the modification method proposed by the paper can also help submersion positioning for the underwater vehicle, as well as the military submerged body.  相似文献   
145.
Remote sensing has rarely been used as a tool to map and monitor submerged aquatic vegetation (SAV) in rivers, due to a combination of insufficient spatial resolution of available image data and strong attenuation of light in water through absorption and scattering. The latter process reduces the possibility to use spectral reflectance information to accurately classify submerged species. However, increasing availability of very high resolution (VHR) image data may enable the use of shape and texture features to help discriminate between species by taking an object based image analysis (OBIA) approach, and overcome some of the present limitations.This study aimed to investigate the possibility of using optical remote sensing for the detection and mapping of SAV. It firstly looked at the possibilities to discriminate submerged macrophyte species based on spectral information only. Reflectance spectra of three macrophyte species were measured in situ across a range of submergence depths. The results showed that water depth will be a limiting factor for the classification of species from remote sensing images. Only Spiked Water Milfoil (Myriophyllum spicatum) was indicated as spectrally distinct through ANOVA analysis, but subsequent Jeffries–Matusita distance analysis did not confirm this. In particular Water Crowfoot (Ranunculus fluitans) and Pondweed (Potamogeton pectinatus) could not be discriminated at 95% significance level. Spectral separability of these two species was also not possible without the effect of an overlying water column.Secondly, the possibility to improve species discrimination, using spatial and textural information was investigated for the same SAV species. VHR image data was acquired with a Near Infrared (NIR) sensitive DSLR camera from four different heights including a telescopic pole and a Helikite UAS. The results show that shape and texture information can improve the detection of the spectrally similar Pondweed and Water Crowfoot from VHR image data. The best performing feature ‘length/width ratio of sub-objects’ was obtained through expert knowledge. All of the shape and texture based features performed better at species differentiation than the spectrally based features.In conclusion this study has shown that there is considerable potential for the combination of VHR data and OBIA to map SAV in shallow stream environments, which can benefit species monitoring and management.  相似文献   
146.
Precise measurements of submerged archaeological markers in the Siracusa coast (Southeastern Sicily, Italy) provide new data on relative sea-level change during the late Holocene. Four submerged archaeological sites have been studied and investigated through direct observations. Two of them are Greek archaic in age (2.5–2.7 ka) and are now 0.98–1.48 m below sea level; the other two developed during the Bronze age (3.2–3.8 ka) and are now 1.03–1.97 m below sea level. These archaeological data have been integrated with information derived from a submerged speleothem collected in a cave located along the Siracusa coast at − 20 m depth. The positions of the archaeological markers have been measured with respect to present sea level, corrected for tide and pressure at the time of surveys. These data were compared with predicted sea-level rise curves for the Holocene using a glacio-hydro-isostatic model. The comparison with the curve for the southeastern Sicily coast yields a tectonic component of relative sea-level change related to regional uplift. Uplift rates between 0.3 and 0.8 mm/yr have been estimated.  相似文献   
147.
Direct numerical simulations are performed to study the transformation of internal solitary waves (ISWs) of depression type propagating over an underwater ridge in a two-layer fluid system. Bottom ridges with relatively smooth vertex are employed to represent sills in natural lakes and oceans. Consistent with previous experiments, three interaction types (weak, moderate and strong) are observed to be based on the energy loss. In addition, the moderate interaction are found to be categorized into transmitted and reflected type according to their distinct transformation process. General flow characteristics for ISW–ridge interaction in the benthic boundary layer and in the pycnocline is monitored and analysed. A modified degree of blocking Bm considering both the nonlinear effect of incident ISWs and the blockage effect of the submerged ridge is proposed. Different ISW–ridge interactions are discovered to be linked with Bm. Maximum wave-induced velocities, wave energy losses, reflected and transmitted wave amplitudes are found to have a self-similar feature with Bm. The maximum energy loss is up to 35% and the maximum wave-induced velocity can reach 1.8 times of the phase speed of the incident ISW. Empirical equations are obtained based on the data fitting to predict some useful physical parameters during ISW–ridge interaction.  相似文献   
148.
Submerged prehistory has emerged as a key topic within archaeology over the last decade. During this period the broader academic community has become aware of its potential for revolutionising our understanding of the past. With recent technological and scientific developments has come an opportunity to investigate larger areas and learn more than previously thought possible. When charting the future of the subject, however, it is also necessary to consider its historical trajectory. This sense of opportunity and optimism has been experienced before, but not sustained. As such, our greatest challenge lies not in adopting technological developments, but in maintaining momentum.  相似文献   
149.
This article evaluates different spatial interpolation methods for mapping submerged aquatic vegetation (SAV) in the Caloosahatchee Estuary, Florida. Data used for interpolation were collected by the Submersed Aquatic Vegetation Early Warning System (SAVEWS). The system consists of hydro-acoustic equipment, which operates from a slow-moving boat and records bottom depth, seagrass height, and seagrass density. This information is coupled with geographic location coordinates from a Global Positioning System (GPS) and stored together in digital files, representing SAV status at points along transect lines. Adequate spatial interpolation is needed to present the SAV information, including density, height, and water depth, as spatially continuous data for mapping and for comparison between seasons and years. Interpolation methods examined in this study include ordinary kriging with five different semivariance models combined with a variable number of neighboring points, the inverse distance weighted (IDW) method with different parameters, and the triangulated irregular network (TIN) method with linear and quintic options. Interpolation results were compared with survey data at selected calibration transects to examine the suitability of different interpolation methods. Suitability was quantified by the determination coefficient (R2) and the root-mean-square error (RMSE) between interpolated and observed values. The most suitable interpolation method was identified as the one yielding the highest R2 value and/or the lowest RMSE value. For different geographic conditions, seasons, and SAV parameters, different interpolation methods were recommended. This study identified that kriging was more suitable than the IDW or TIN method for spatial interpolation of all SAV parameters measured. It also suggested that transect data with irregular spatial distribution patterns such as SAV parameters are sensitive to interpolation methods. An inappropriate interpolation method such as TIN can lead to erroneous spatial representation of the SAV status. With a functional geographic system and adequate computing power, the evaluation and selection of interpolation methods can be automated and quantitative, leading to a more efficient and accurate decision.  相似文献   
150.
The interaction of waves with arrays of porous circular cylinders is studied theoretically and, under the assumption of potential flow and linear wave theory, an analytical solution is derived. The solution is valid for either submerged or emerged structures. The extension to the cases of unidirectional and multidirectional waves is obtained by means of a transfer function. For specific conditions the model gives the same solution as those previously presented by other authors. Numerical results are presented which exemplify diverse wave and mechanical parameters on the wave transformation due to the presence of a system of circular cylinders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号