首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   2篇
地球物理   5篇
地质学   26篇
海洋学   1篇
  2023年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
21.
路基填料的承载比(CBR值)是土体抗局部剪切力(潜在强度)的反映,是评价其路用性能的重要指标。因此正确应用CBR值和理解承载比试验的内在机理,分析其试验操作技术具有重要意义。  相似文献   
22.
基于2008年汶川地震道路破坏数据与破坏现象,对道路构件(挡土墙、边坡和路基路面)震害相关因素进行统计,宏观分析统计结果。根据道路构件不同的破坏形式进行分类,总结每类破坏形式常见的自然地质条件及工程因素,并给出地震作用下道路构件震害发生机理,加深对公路系统震损特征的了解,有利于因地制宜地提高道路抗震能力和震后恢复能力。  相似文献   
23.
路基土在长期服役过程中性能会发生衰变,其中含水率及压实度是路基施工时的重要控制指标,因此,土体的含水率控制及压实质量是关系路基性能评价的关键因素。为了弥补现有检测方法的不足,基于四极电测量法研发了一种土体物理参数室内快速测试装置,通过改变含水率对不同压实度土样的电阻率、极化率变化进行了一系列室内试验,得到了其相关关系及变化趋势,分析了含水率、压实度对电参数的影响,提出了依据土含水率、压实度计算电阻率、极化率的计算公式,探讨了测试方法的可行性。结果表明:不同地区土的电阻率均随含水率、压实度增加而减小,极化率随含水率、压实度的增加而增大,不同压实度下,土的电阻率、极化率随含水率变化分别呈现相似指数、对数特征;对于天津王庆坨地区壤土,压实度在84. 47%~94. 41%范围内,含水率从15%变化至20%时,电阻率下降为原来的1/3~1/2倍,极化率增大为原来的1. 4~2. 3倍,得到了室内拟合公式;实际工程中,电阻率法更适用于土体含水率检测,极化率法更适用于土体压实度检测;综合应用电阻率、极化率指标对于路基工程具有较好的勘探前景。研究成果将为路基土的工程性质检测及评价提供理论基础。  相似文献   
24.
Flexural response of piles under liquefied soil conditions   总被引:1,自引:1,他引:1  
The paper pertains to the development of a generalized procedure to analyze and predict the flexural behavior of axially and laterally loaded pile foundations under liquefied soil conditions. Pseudo-static analysis has been carried out taking into consideration the combined effect of axial load and lateral load. Based on the available literature effect of degradation on the modulus of subgrade reaction due to soil liquefaction has been incorporated in the analysis. The developed program was calibrated and validated by comparing the predicted behavior of the pile with theoretical and experimental results reported in literature. The predicted behavior has been found to be in excellent to very good agreement with the theoretical and observed values in the field, respectively. The present study highlights the importance of considering the axial load from the superstructure along with the inertia forces from the superstructure and the kinematic forces from the liquefied soil in the design of pile foundations in liquefiable areas. The significance of densification of the soil in the liquefiable areas and presence of an adequate top non-liquefied soil cover causing appreciable reduction in deflection and bending moment experienced by the piles has been highlighted.  相似文献   
25.
A simplified method is introduced to obtain the fundamental frequency of offshore wind turbines supported by monopile foundations. Soil-pile interaction is modeled based on Winkler approach and concept of beam on elastic foundation. The soil is considered to have linearly varying modulus of subgrade reaction along depth which is a typical assumption for cohesionless soils. Rayleigh method which is based on conservation of total energy of the system is utilized. Firstly the natural frequency of the system with rigid pile is derived and then an innovative procedure is introduced to take pile flexural stiffness into consideration. Comparison between results of the present method with those of a numerical FE model for a typical 2 MW wind turbine structure shows excellent agreement for rigid pile and flexible pile with small value of slenderness ratio. The agreement is also good for flexible pile with higher slenderness ratios. A parametric study is carried out to investigate the effect of important parameters of foundation including pile slenderness ratio, pile aspect ratio and pile mass on the system natural frequency.  相似文献   
26.
针对节能环保型公路多采取低路堤设计方案,造成部分黄土路基处于交通荷载的影响范围内,易产生路基沉降变形的现状。本文从动三轴试验角度出发,研究车辆动荷载作用下干密度、围压和频率对路基土体动力学性质的响应。研究表明:随着干密度、围压和加载频率的增大,路基土体的动弹性模量增大,且对于同一土体,随着动弹性模量的增大,阻尼比呈减小趋势。在低路堤的设计方案中,可通过适当提高黄土路基的干密度来减轻运营期间车辆荷载造成的沉降;同时,在路基设计中要以车辆动荷载频率范围的下限作为路基相关设计参数的参考。  相似文献   
27.
The effect on the fatigue life of a subgrade beneath a uniformly loaded cement concrete runway, when detonation gases have formed a void in the subgrade is considered. The research models numerically the runway and the subgrade and considers the void when empty, partially filled, and filled. The void may or may not be pressurized. Pressurizing the void reduces the downward vertical runway surface displacements. In only two of the 90 numerical models considered did pressurizing the void increase the subgrade fatigue life. In the subgrade outside the cone of disturbance, the fatigue life was significantly reduced.  相似文献   
28.
Analytical equations for the moment–rotation response of a rigid foundation on a Winkler soil model are presented. An equation is derived for the uplift-yield condition and is combined with equations for uplift- and yield-only conditions to enable the definition of the entire static moment–rotation response. The results obtained from the developed model show that the inverse of the factor of safety, χ, has a significant effect on the moment–rotation curve. The value of χ=0.5 not only determines whether uplift or yield occurs first but also defines the condition of the maximum moment–rotation response of the footing. A Winkler model is developed based on the derived equations and is used to analyze the TRISEE experiments. The computed moment–rotation response agrees well with the experimental results when the subgrade modulus is estimated using the unload–reload stiffness from static plate load–deformation tests. A comparison with the recommended NEHRP guidelines based on the FEMA 273/274 documents shows that the choice of value of the effective shear modulus significantly affected the comparison.  相似文献   
29.
Pile foundation as well as other underground structures could be seriously affected by soil liquefaction during strong earthquakes. Damages on pile foundation due to liquefaction can be reduced by implementation of some soil improvement method. Main objective of present study is developing of drain method that can improve the soil in order to mitigate the destructiveness of liquefaction on superstructure supported by pile foundation. Series of shaking table tests were conducted on 2×2 pile foundation and soil model was improved by drains. Configurations of drains around piles, intensity of shaking were one of the parameters that were changing during the tests in order to investigate the response of pile foundation in improved soil condition.Shaking table tests and performed On-site experiment showed the following effects of the new drain method. (1) When the intensity of earthquake motion is 200 gal or less, generation of excess pore water pressure is reduced and the pile bending moment is decreased, (2) when the intensity of earthquake motion is stronger (300 gal or more), drainage effect prevents disappearance of subgrade reaction, and (3) proposed new type of drain can control excess pore water pressure without clogging.  相似文献   
30.
Silt cannot satisfy the requirements of highway construction because of its low strength. A new stabilizing agent (SEU-2) was developed to improve the mechanical performance and applicability of silt in road. Laboratory tests, including unconfined compression and shrinkage tests, were performed. Test results show that the new stabilizing agent can significantly increase the strength and the water stability, and decrease the shrinkage strain of silt. Field tests were also carried out and the results indicated that the new stabilizing agent could effectively improve the entire stiffness of subgrade. From the point of view in mechanics and applicability in road, adding 4% new stabilizing agent is an economic and reasonable method to stabilize the silt. The stabilized silt has high early strength, small shrinkage deformation, and high entire stiffness. It can satisfy the requirements of highway subgrades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号