首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   57篇
  国内免费   149篇
测绘学   110篇
大气科学   114篇
地球物理   565篇
地质学   1061篇
海洋学   132篇
天文学   205篇
综合类   12篇
自然地理   156篇
  2024年   25篇
  2023年   73篇
  2022年   50篇
  2021年   72篇
  2020年   166篇
  2019年   99篇
  2018年   127篇
  2017年   184篇
  2016年   116篇
  2015年   139篇
  2014年   238篇
  2013年   369篇
  2012年   224篇
  2011年   23篇
  2010年   28篇
  2009年   45篇
  2008年   32篇
  2007年   22篇
  2006年   26篇
  2005年   29篇
  2004年   37篇
  2003年   23篇
  2002年   35篇
  2001年   16篇
  2000年   21篇
  1999年   40篇
  1998年   31篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有2355条查询结果,搜索用时 15 毫秒
941.
Vertical uplift static loading tests of single model pile were conducted in the in-lab calcareous sand and quartz sand by emulating practical condition of full-size piles in site. The settlement, lateral deflection, axial force, and friction distribution of the pile are analyzed for each physical test. The pile behaviors in calcareous sand and quartz sand are compared. From the test results, it can be found that the pile top displacement of uplift pile in calcareous sand can be divided into two stages: the pile–sand synchronous stage and pile–sand asynchronous (relative displacement) stage. Data from uplift tests show that the heave of calcareous sand around pile top is very small, which is resulted from the mutually restraint of surface particle. The mutual restriction of surface particle leads to “bottleneck effect” and strengthens ultimate side friction of upper pile segment. In addition, the shear dilatancy and particle breakage of calcareous sand lead to the upper harden and the lower soften of side friction, respectively. Cases of calcareous sand and quartz sand show different responses to pile forming methods, which due to the sands’ different characteristics of particle breakage when compressed as well as plastic deformation under loading–unloading conditions.  相似文献   
942.
Although it represents but one geographic data point, the uppermost Maastrichtian Hell Creek Formation (HCF), exposed in the upper Great Plains of the North American craton, remains the most studied source for understanding the final ∼1.5 Myr of the Mesozoic Era in the terrestrial realm. Because it lies conformably below the earliest Paleocene Fort Union Formation, and together these two units preserve a rich fauna and flora, much of what is understood about the terrestrial Cretaceous–Paleogene (K–Pg) boundary comes from this sequence.The HCF has been reconstructed as an expansive, fluvially drained, low coastal plain, built out, to the west, against the Laramide Orogen, and to the east, against the ultimate transgression (Cannonball) of the Western Interior Sea. Its meandering rivers and moist soils supported a multi-tiered angiosperm-dominated flora and rich insect and vertebrate faunas, including dinosaurs, crocodilians, squamates, turtles, and mammals. A dramatic facies change representing the initiation of catastrophic flooding is preserved, within available levels precision, at the K–Pg boundary.High-precision stratigraphy has proven difficult in this lenticular fluvial system. Where present, the boundary can be recognized by the bipartite boundary claystone; otherwise, palynostratigraphy has proven a powerful tool. Numerical dates have been successfully obtained from in tonsteins at the boundary and above, in the Fort Union; however, these have proven elusive below the boundary within the HCF. The K–Pg boundary in this region is dated at 66.043 Ma (Renne et al., 2013). Magnetostratigraphic studies have been carried out in the HCF; although all but one have lacked numerical dates, these have been used for correlations of widespread, disjunct exposures and for the estimation of sedimentation rates.The palynoflora is largely homogenous through the HCF; at the K–Pg boundary, it shows an abrupt ∼30% extinction. This makes it a powerful tool for identification of the K–Pg boundary, although because the boundary is identified on absence of Cretaceous taxa rather than presence of earliest Paleocene taxa, several competing methods have been applied to identifying the K–Pg boundary using pollen.The macroflora, consisting largely of leaves, consists of three successive floras, showing increasing diversity through the HCF. The ultimate of these three floras undergoes an abrupt 57% extinction; taken as a whole, however, the macroflora undergoes a 78% extinction at the K–Pg boundary.The best data available for dinosaurs – including archaic Aves – show an abrupt extinction. By contrast, salamanders and other lissamphibians, as well as chelonians, cross the boundary virtually without perturbation. Squamates appear to have suffered significant extinctions at the K–Pg boundary, as did euselachians (elasmobranchs) and insects. Mammals suffered a 75% extinction; however, some of this figure cannot be shown to have occurred in less than the last 500 kyr of the Cretaceous, and thus has been potentially attributable to causes other than a bolide impact. Taken together, the survivorship patterns are concordant with the catastrophic inception of ubiquitous flooding characterizing the K–Pg boundary.While the key K–Pg boundary question in the HCF was once the rate of the biotic extinction, it has moved to the distinction between single-cause scenarios, with the Chicxulub bolide as agent of extinction, and multi-cause scenarios, uniting habitat partitioning, Deccan flood-basalt volcanism, climate change, competition, and bolide impact. Not every potential environmental perturbation need be a mechanism for the extinction: parsimony and the data continue to be concordant with a bolide impact as the single agent of the terrestrial K–Pg mass extinction.  相似文献   
943.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   
944.
The molecular composition of Carboniferous–Permian coals in the maturity range from 0.66 to 1.63% vitrinite reflectance has been analysed using organic geochemistry to investigate the factors influencing the biomarker compositions of humic coals. The Carboniferous–Permian coal has a variable organofacies and is mainly humic-prone. There is a significant difference in the distribution of saturated and aromatic hydrocarbons in these coals, which can be divided into three types. The Group A coals have biomarker compositions typical of humic coal, characterised by high Pr/Ph ratios, a lower abundance of tricyclic terpanes with a decreasing distribution from C19 tricyclic terpane to C24 tricyclic terpane and a high number of terrigenous-related biomarkers, such as C24 tetracyclic terpane and C29 steranes. The biomarker composition of Group B coals, which were deposited in a suboxic environment, have a higher abundance of rearranged hopanes than observed in Group A coals. In contrast, in Group C coals, the Pr/Ph ratio is less than 1.0, and the sterane and terpane distributions are very different from those in groups A and B. Group C coals generally have abnormally abundant tricyclic terpanes with a normal distribution maximising at the C23 peak; C27 steranes predominates in the m/z 217 mass fragmentograms. The relationships between biomarker compositions, thermal maturity, Pr/Ph ratios and depositional environments, indicate that the biomarker compositions of Carboniferous–Permian coals in Ordos Basin are mainly related to their depositional environment. This leads to the conclusion that the biomarker compositions of groups A and B coals collected from Shanxi and Taiyuan formations in the northern Ordos Basin are mainly related to their marine–terrigenous transitional environment, whereas the biomarker compositions for the Group C coals from Carboniferous strata and Shanxi Formation in the eastern Ordos Basin are associated with marine incursions.  相似文献   
945.
Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between ?8.1‰ and ?6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition.  相似文献   
946.
《地学前缘(英文版)》2020,11(5):1593-1608
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB) in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly 1.1,except for two samples with 1.09),high contents of SiO_2(74.38-76.84 wt.%) and Al_2 O_3(12.46-14.05 wt.%) and variable CaO/Na_2 O ratios(0.2-0.65) as well as high zircon δ~(18)O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial ~(87)Sr/~(86)Sr ratios(0.6917-0.7101),and less radiogenic εNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negative ε_(Hf)(t) values in the range of-3.7 to-9.9 with mean T_(DM2)(Nd) and T_(DM2)(Hf) values of 1.57 Ga and 1.55 Ga.They show initial ~(207)Pb/~(204)Pb ranging from15.69 to 15.71 and ~(206)Pb/~(204)Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lower δ~(18)O values and higher ε_(Hf)(t) values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/~(238)U ages of 83.7 ± 0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and ~(208)Pb/~(232)Th ages of 83.2 ± 0.5 Ma,83.8 ± 0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/~(238)U ages of 83.5±0.4 Ma(MSWD=0.6),83.5 ± 0.4 Ma(MSWD=0.5),83.6 ±0.4 Ma(MSWD=0.6) and 83.2 ±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.  相似文献   
947.
《Comptes Rendus Geoscience》2014,346(1-2):13-19
The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin–basement unconformity have been studied. Dating is based on U–Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment–granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U–Pb isotopic dating outlines three successive events: a 3.0–2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na–Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic–Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga.  相似文献   
948.
Based on a coupled physical-biogeochemical model of the Yellow and East China Seas (YECS), the influence of biological activity on the seasonal variation of the air–sea CO2 flux is evaluated. The solution of a sensitivity experiment that excludes biological activity is compared with that of a reference experiment that includes the full processes. The comparison reveals that biological activity results in a much stronger seasonal variation of surface dissolved inorganic carbon (DIC) and, hence, the ratio of total alkalinity to DIC in the northern parts of the YECS. The increased ratio resulting from biological DIC consumption contributes to the undersaturated partial pressure of CO2 at the sea surface with respect to the atmosphere, causing the central Yellow Sea in summer and autumn to shift from being a CO2 source to a sink; this same shift also occurs over the Changjiang Bank in summer. In the southern YECS, the biological effect is relatively weak. The comparison further reveals that low water temperature, instead of biological activity, is the dominant factor causing the YECS to become a carbon sink in spring. The biological effect on the variation of DIC (both at the surface and in the water column) differs greatly among the three representative regions of the YECS because of differences in primary production and hydrodynamic conditions. Particle-tracking simulations quantify the regional difference in horizontal advection. In the northern region, weaker horizontal advection causes the longer residence time of low DIC water induced by biological consumption. Over the entire YECS, biological activity contributes to about one-third of the total annual absorption of atmospheric CO2.  相似文献   
949.
Reducing Emissions from Deforestation and Forest Degradation (REDD+) is considered a promising strategy to slow down deforestation rates, promote sustainable forest use, and support rural livelihoods under the umbrella of climate change mitigation. However, so far there is only little field-based knowledge on how REDD+ can go along with subsistence-based production systems and livelihoods of forest-dependent communities. We addressed this research gap by analyzing the income generation of three widespread ethnic groups (Colonists, Shuar, Kichwa) in the buffer zone of the Yasuní National Park in Ecuador to better understand their livelihoods and possible engagement in REDD+. We selected two communities of each ethnic group (close-to and far-from markets) and used household surveys to (a) calculate household incomes, (b) assess the degree of forest-dependency, and (c) discuss how REDD+ schemes can be designed along with traditional subsistence-based production systems. We found that the studied indigenous communities have a higher degree of forest-dependency and higher environmental income compared to Colonists. However, our assumption that close-to-market communities have a lower degree of forest dependency and higher cash income due to better market access and labor opportunities applies only to the Colonists and Shuar, but must be rejected for the Kichwas who gain income from timber sale. Despite these differences, all communities receive high off-farm revenues from unskilled labor provided by oil-companies and external aid. Therefore, dependency on agriculture and forestry is temporarily reduced. Under these circumstances, REDD+ provides only weak financial incentives so that the willingness to participate in REDD+ is low.  相似文献   
950.
NICMOS is a second generation instrument for the Hubble Space Telescope to provide imaging and spectroscopic capabilities in the near infrared region. NICMOS utilizes HgCdTe detectors in three cameras, one with grisms, to image in the 0.8–2.5 mm spectral region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号