首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   57篇
  国内免费   149篇
测绘学   110篇
大气科学   114篇
地球物理   565篇
地质学   1061篇
海洋学   132篇
天文学   205篇
综合类   12篇
自然地理   156篇
  2024年   25篇
  2023年   73篇
  2022年   50篇
  2021年   72篇
  2020年   166篇
  2019年   99篇
  2018年   127篇
  2017年   184篇
  2016年   116篇
  2015年   139篇
  2014年   238篇
  2013年   369篇
  2012年   224篇
  2011年   23篇
  2010年   28篇
  2009年   45篇
  2008年   32篇
  2007年   22篇
  2006年   26篇
  2005年   29篇
  2004年   37篇
  2003年   23篇
  2002年   35篇
  2001年   16篇
  2000年   21篇
  1999年   40篇
  1998年   31篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有2355条查询结果,搜索用时 15 毫秒
91.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   
92.
SVOM数据档案库软件原型系统的设计与实现   总被引:1,自引:0,他引:1  
作为中法天文卫星(Space multi-band Variable Object Monitor,SVOM)中方科学中心的重要组成部分,中法天文卫星数据档案库承担了中方科学数据产品本地存储和管理的任务,提供统一的数据产品管理平台,实现中法天文卫星科学数据产品的归档、检索、检出、维护与管理等功能。作为中法天文卫星科学中心预研的一部分,对中法天文卫星数据档案库原型系统进行了需求分析、系统设计,实现能够运行的原型系统,以演示中法天文卫星数据档案库的基本功能和工作流程,验证设计方案的可行性。档案库原型系统具有开放性和低耦合的特点,能够适应中法天文卫星中方数据产品结构的不断变化,在项目早期即可投入试用并不断完善,满足中法天文卫星的任务需求。  相似文献   
93.
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.  相似文献   
94.
NASA’s Meteoroid Environment Office has implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the Moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations. Hypervelocity impact tests at the Ames Vertical Gun Range facility have begun to determine the luminous efficiency and ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation manned lunar program. The observational techniques and preliminary results will be discussed. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
95.
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.  相似文献   
96.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
97.
The dynamics of space debris with very high A/m near the geostationary orbit is dominated by the gravitational coefficient C 22 and the solar radiation pressure. An analysis of the stability of the orbits by the chaos indicator MEGNO and frequency analysis map FAM shows chaotic layers around the separatrix and reveals a web of sub-structures associated to resonances with the annual period of the Sun. This succession of stable thin islands and chaotic layers can be reproduced and explained by a quite simple toy model, based on a pendulum approach, perturbed, through the eccentricity, by the external (Sun) frequency. The use of suitable action-angle variables in the circulation and libration regions of the pendulum allows to point out new resonances between the geostationary libration angle and the Sun’s longitude. They correspond very well (positions, shape, width) to the structures visible on the FAM representations.  相似文献   
98.
C10H6-Fe+ complexes were observed by Fourier transform mass spectrometry by Marty et al. (Chem. Phys. Lett. 256 (1996) 669). In this article, we present the infra-red (IR) spectra of the two isomers calculated by ab initio methods of quantum chemistry. In the past, the same approach has predicted successfully unexpected features of the IR spectra of polycyclic aromatic hydrocarbon (PAH) cations which were confirmed by measurements in matrices (J. Phys. Chem. 98 (1994) 9187). The C10H6-Fe+ systems are models for larger PAHs-Fe+ complexes, which are believed to play a key rôle in space chemistry.  相似文献   
99.
The magnetosphere dynamics shows fast relaxation events following power-law distribution for many observable quantities during magnetic substorms. The emergence of such power-law distributions has been widely discussed in the framework of self-organized criticality and/or turbulence. Here, a different approach to the statistical features of these impulsive dynamical events is proposed in the framework of the thermodynamics of rare events [Lavenda, B.H., Florio, A., 1992. Thermodynamics of rare events, Int. J. Theor. Phys. 31, 1455–1475; Lavenda, B.H., 1995. Thermodynamics of Extremes. Albion]. In detail, an application of such a novel approach to the magnetospheric substorm avalanching dynamics as monitored by the auroral electroject index is discussed.  相似文献   
100.
The low-energy lunar trajectories with lunar flybys are investigated based on the Sun-Earth-Moon bicircular problem (BCP). The characteristics of the distribution of trajectories in the phase space are summarized. Using the invariant manifolds in the BCP system, the low-energy lunar trajectories with lunar flybys are sought. Then, take time as an augmented dimension in the phase space of a nonautonomous system, we present the state space map and reveal the distribution of these lunar trajectories in the phase space. Consequently, we find that the low-energy lunar trajectories exist as families, and that the every moment in the Sun-Earth-Moon synodic period can be the departure date. Finally, we analyse the velocity increment, transfer duration, and system energy for the different trajectory families, and obtain the velocity-impulse optimal family and the transfer-duration optimal family, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号