首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   7篇
  国内免费   3篇
测绘学   2篇
大气科学   7篇
地球物理   23篇
地质学   92篇
海洋学   36篇
天文学   2篇
综合类   2篇
自然地理   62篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   19篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   12篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
11.
Two crust-forming events dominate the Precambrian history of the Western Gneiss Region (WGR) at about 1800–1600 Ma and 1550–1400 Ma. The influence of the Sveconorwegian orogeny (1200–900 Ma) is restricted to the region south of Moldefjord-Romsdalen. A series of anorthosites and related intrusives are present, possibly derived from the now-lost western margin of the Baltic craton that may have been emplaced in the WGR as an allochthonous unit before the Ordovician.The Caledonian development is split into two orogenic phases, the Finnmarkian (Cambrian — Early Ordovician) and the Scandian (Late Ordovician/Early Silurian — Devonian). The lower tectonic units west of the Trondheim Trough may be Finnmarkian nappes ; they were part of the lower plate during the Scandian continental collision. The Blåhö nappe is correlated with dismembered eclogite bodies along the coast. A regional change of nappe transport direction from 090 to 135 marks the initiation of an orogen-parallel sinistral shear component around 425 Ma. The change caused the development of a complex sinistral strike-slip system in the Trondheim region consisting of the Möre-Tröndelag Fault Zone and the Gränse contact. The latter cut the crust underneath the already emplaced Trondheim Nappe Complex, thus triggering the intrusion of the Fongen-Hyllingen igneous complex, and initiating subsidence of the Trondheim Trough, and was subsequently turned from a strike-slip zone into an extensional fault. Minor southward transport of the Trondheim Nappe Complex rejuvenated some thrusts between the Lower and the Middle Allochthon. A seismic reflector underneath the WGR is interpreted to be a blind thrust which subcrops into the Faltungsgraben. During Middle Devonian orogenic collapse, detachment faulting brought higher units, now eroded elsewhere, down to the present outcrop level, such as the Bergen and Dalsfjord nappe and the Old Red basins.  相似文献   
12.
13.
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data.  相似文献   
14.
Radiocarbon dating of thin palaeopodsols buried beneath turf-banked gelifluction lobes at four localities in the low alpine mountain zone in the Jostedalsbreen region, western Norway, show that gelifluction processes were initiated subsequent to the late Subboreal Chronozone. Although large age-depth gradients have been demonstrated from buried palaeosols in southern Norway, evidence is presented that the palaeosols in this study show only moderate age-depth gradients. The age estimates from these buried palaeosols give maximum dates of burial, but the error is not thought to be large. Gelifluction processes were probably initiated close to the time of the climatic deterioration, which led to the formation of the present glaciers during the Subatlantic Chronozone. The processes may have been most active during the peak of the Little Ice Age, during which a periglacial climate was established to low levels in this mountainous region.  相似文献   
15.
Emission rates of biogenic volatile organic compounds emitted by the forests were estimated for five geographical regions as well as for all Switzerland. Monoterpene and isoprene emissions rates were calculated for each main tree species separately using the relevant parameters such as temperature, light intensity and leaf biomass density. Biogenic emissions from the forests were found to be about 23% of the total annual VOC emissions (anthropogenic and biogenic) in Switzerland. The highest emissions are in July and lowest in January. Calculations showed that the coniferous trees are the main sources of the biogenic emissions. The major contribution comes from the Norway spruce (picea abies) forests due to their abundance and high leaf biomass density. Although broad-leaved forests cover 27% of all the forests in Switzerland, their contribution to the biogenic emissions is only 3%. Monoterpenes are the main species emitted, whereas only 3% is released as isoprene. The highest emission rates of biogenic VOC are estimated to be in the region of the Alps which has the largest forest coverage in Switzerland and the major part of these forests consists of Norway spruce. The total annual biogenic VOC emission rate of 87 ktonnes y–1 coming from the forests is significantly higher than those from other studies where calculations were carried out by classifying the forests as deciduous and coniferous. The difference is attributed to the high leaf biomass densities of Norway spruce and fir (abies alba) trees which have a strong effect on the results when speciation of trees is taken into account. Besides the annual rate, emission rates were calculated for a specific period during July 4–6, 1991 when a photochemical smog episode was investigated in the Swiss field experiment POLLUMET. Emission rates estimated for that period agree well with those calculated for July using the average temperatures over the last 10 years.  相似文献   
16.
Many bedrock-confined fjord valleys along the Norwegian coast contain thick accumulations of fine-grained sediments that were deposited during and after the last deglaciation. The deposits gradually emerged above sea level due to glacioisostatic uplift, and fjord marine sedimentation was gradually followed by shallow marine and fluvial processes. During emergence terraces and river-cut slopes were formed in the valleys. Subsequent leaching of salt ions from the pore water in the marine deposits by groundwater has led to the development of quick clay. The deposits are subject to river erosion and destructive landslides involving quick clay. Most slides are of prehistoric age. Others are known from modern observations as well as from historic records.Landforms such as distinct slide scars or the hummocky terrain of slide deposits may be strongly modified by secondary processes. In addition, deposits from the most liquid part of quick clay slides may have planar surfaces. Clay-slide deposits on a fluvial or deltaic terrace, therefore, are not always easily recognized from morphology, and only exposures may reveal their internal structures and allow them to be distinguished from overbank flood sediments. Detailed sedimentological work shows that slide deposits in such setting consist of distinct facies containing reworked marine sediments. We propose three facies successions of clay-slide deposits that form a continuum. The dominant components of these succession types are: slightly deformed blocks of laminated clay and silt (A), highly deformed clay and silt with gravel clasts (B) and massive to stratified clay and silt with scattered clasts (C). We suggest that in many cases a basal muddy diamicton is a characteristic, and possibly diagnostic feature. Processes and depositional models are interpreted from the different succession types. The results may be relevant for identifying clay-slide deposits elsewhere and may be useful during general mapping of fjord marine deposits and characterization of slide-prone areas as well as during identification of prehistoric slides.  相似文献   
17.
http://www.sciencedirect.com/science/article/pii/S167498711400067X   总被引:1,自引:0,他引:1  
The Proterozoic Bamble Sector, South Norway, is one of the world's classic amphiboliteto granulite- facies transition zones. It is characterized by a well-developed isograd sequence, with isolated 'granulite-facies islands' in the amphibolite-facies portion of the transition zone. The area is notable for the discovery of C02-dominated fluid inclusions in the granolite-facies rocks by Jacques Touter in the late 1960's, which triggered discussion of the role of carbonic fluids during granulite genesis. The aim of this review is to provide an overview of the current state of knowledge of the Bamble Sector, with an emphasis on the Arendal-Froland-Nelaug-Tvedestrand area and off shore islands (most prominantly Tromay and Hisoy) where the transition zone is best developed. After a brief overview of the history of geological research and mining in the area, aspects of sedimentary, metamorphic and magmatic petrology of the Bamble Sector are discussed, including the role of fluids. Issues relevant to current geotectonic models for SW Scandinavia, directly related to the Bamble Sector, are discussed at the end of the review.  相似文献   
18.
挪威是世界上重要的石油生产国和出口国,对世界石油市场供需稳定有重要影响。本文在项目工作基础上,简要讨论了挪威油气资源管理与投资环境,包括油气资源潜力与油气工业概况、油气管理体制与框架、主要管理机构、主要油气法律、油气权设置、主要油气管理政策、油气税制等。  相似文献   
19.
The Landscape Reconstruction Algorithm (LRA) with the two models REVEALS and LOVE is developed to transform pollen percentage data to vegetation cover. This paper presents the first study to evaluate LRA in a region with large topographic variations within a short distances. The REVEALS model estimates regional vegetation abundance based on pollen assemblages from large lakes (100–500 ha). Pollen surface samples from one large and 28 small lakes are used together with a combination of regionally derived pollen productivity estimates and available estimates from other regions of Europe. The results show a good relationship between REVEALS‐estimated forest cover and vegetation abundance based on the CORINE land‐cover data. The REVEALS results using various sets of pollen assemblages from small lakes were comparable to those using one large lake. Local vegetation abundance using the LOVE model was estimated around 26 lakes. For common taxa, such as Pinus and Poaceae, the LOVE‐based estimates of plant abundance match well with the distance‐weighted plant abundances based on vegetation maps. Our results indicate that the LRA approach is effective for reconstruction of long‐term vegetation changes in western Norway and other regions with high topographic relief when no major gradients exist in the pollen data.  相似文献   
20.
The Norwegian massif of Rondane is part of the Scandes Mountains and is subject to polar, oceanic and continental influences. Because of its climatic context and its quartzitic structure, the massif has one of the thickest functional periglacial belts in Europe (1200 m). This belt is not fixed considering its translation in altitude since the end of the Little Ice Age. This mobility is continuing and involves periglacial decay dynamics which are revealed by numerous and various periglacial forms in the field. Because of their frequency in the massif and also their sensitivity to climate fluctuations, earth patches and small non‐sorted circles have a diagnostic value for current periglacial climate fluctuations. The major aim of this study is to propose several indicators of this periglacial decay and to highlight its consequences on periglacial belt mobility because these landforms enable the delimitation of a critical belt of decay in the massif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号