首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4387篇
  免费   851篇
  国内免费   1982篇
测绘学   45篇
大气科学   1004篇
地球物理   677篇
地质学   2734篇
海洋学   2025篇
天文学   18篇
综合类   211篇
自然地理   506篇
  2024年   32篇
  2023年   78篇
  2022年   224篇
  2021年   189篇
  2020年   212篇
  2019年   271篇
  2018年   224篇
  2017年   251篇
  2016年   244篇
  2015年   235篇
  2014年   348篇
  2013年   389篇
  2012年   281篇
  2011年   306篇
  2010年   214篇
  2009年   322篇
  2008年   352篇
  2007年   340篇
  2006年   341篇
  2005年   301篇
  2004年   283篇
  2003年   242篇
  2002年   229篇
  2001年   184篇
  2000年   173篇
  1999年   159篇
  1998年   131篇
  1997年   127篇
  1996年   94篇
  1995年   67篇
  1994年   103篇
  1993年   74篇
  1992年   43篇
  1991年   37篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   12篇
  1986年   9篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1979年   2篇
  1976年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有7220条查询结果,搜索用时 859 毫秒
911.
南海的形成揭示了大陆边缘张裂和盆地形成的复杂模式,尽管已经进行了广泛研究,但是关于基底岩石和深海盆沉积层的精确年代数据还很缺乏,这使得对南海张裂年代的估计存在很大的误差,对张裂机制和历史的各种假设没有得到验证.同时只有对南海的张裂过程有了精确地分析与刻画,才能更好地理解西太平洋边缘海盆地的形成以及它们在印支块体受印度-欧亚板块碰撞而向东南挤出、青藏高原隆升中可能起到的作用.2009年正式提交的国际综合大洋钻探计划(IODP)建议书735-Full建议在南海深海盆内的4个站位上实施钻探.这4个站位分布在南海盆地4个不同的次级构造单元上(南海东北部、西北次海盆、东部次海盆和西南次海盆),这样的站位设计会确保完成本建议书的整体研究目标,即揭示南海的张裂历史和它对晚中生代以来东南亚构造的启示.位于南海盆地最东北部的站位有助于确定该区域地壳的属性和验证古南海是否存在,位于西北次海盆的站住可能会提供南海的最早张裂年代,另外2个分别位于东部次海盆和西南次海盆的站位将重点确定2个次海盆的绝对年龄、基底矿物成分与磁化率以及2个次海盆的相对张裂次序.这些站位的水深大约在2 910~4 400 m,钻探深度预计到海底以下大约700~2 200 m,总的钻透深度为5 959 m,其中5 359 m穿透沉积层,另外600 m或400 m钻入基底.所有这些站位的位置是由已有的地球物理观测数据所确定,目前计划收集更多的地质与地球物理数据以满足IODP对井位调查数据的要求.  相似文献   
912.
To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin,we constructed long geological sections across the shelf,slope and oceanic basin using new seismic data.Integrated gravity-magnetic inversion and interpretation of these sections were made with the advanced dissection method.Results show that the basement composition changes from intermediate-acid intrusive rocks in the sheff to intermediate-basic rocks in the slope.The Moho surface shoals gradually from 31 km in the sheff to 22.5 km in the uplift and then 19 km in the slope and finally to 13 km in the oceanic basin.The crust thickness also decreases gradually from 30 km in the northern fault belt to 9 km in the oceanic basin.The crustal stretching factor increases from the shelf toward the oceanic basin,with the strongest extension under the sags and the oceanic basin.The intensity of mantle upwelling controlled the style of basin structures from sheff to oceanic basin.In the Zhu 1 depression on the shelf,the crust is nearly normal,the brittle and cold upper crust mainly controlled the fault development;so the combinative grabens with single symmetric graben are characteristic.In the slope,the crust thinned with a large stretching factor,affected by the mantle upwelling.The ductile deformation controlled the faults,so there developed an asymmetric complex graben in the Baiyun (白云) sag.  相似文献   
913.
In order to understand the characteristics of magnetic variability and their possible implication for sub-sea methane venting,magnetic susceptibility (MS) of 145 surface sediment samples from the southern South China Sea (SCS) was investigated.Magnetic particles extracted from 20 representative samples were also examined for their mineral,chemical compositions and micromorphology.Results indicate that MS values range between -7.73×10-8 and 45.06x10-8 m3/kg.The high MS zones occur at some hydrecarbon-bearing basins and along main tectonic zones,and low ones are distributed mainly within the river delta or along continental shelves.Iron concretions and manganese concretions are not main contributors for high MS values in sediments,while authigenic iron sulphide minerals are possibly responsible for the MS enhancement.This phenomenon is suspected to be produced by the reducing environment where the high upward venting methane beneath the seafloor reacts with seawater sulfate,resulting in seep precipitation of highly susceptible intermediate mineral pyrrhotite,greigite and paramagnetic pyrite.It suggests that MS variability is possibly one of the geochemical indicators for mapping sub-sea zones of methane venting in the southern SCS.  相似文献   
914.
Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side of the Yinggehai (莺歌海) basin (YGHB) with ocean bottom hydrophones (OBHs) and piggyback recorded by onshore stations located on the Hainan (海南)Island.Detailed velocity-depth models were obtained through traveltime modeling and partially constrained by amplitude calculations.More than 15 km Tertiary sedimentary infill within the YGHB can be divided in to three layers with distinct velocity-depth distribution.Overall,the upper layer has a high velocity gradient with 3.8-4.1 km/s at its bottom,consistent with progressive compaction and diagenesls.Its thickness increases gradually towards the basin center,reaching 4.5 km along the southern profile.The middle layer is characterized in its most part as a pronounced low velocity zone (LVZ) with average velocity as low as 3.0 km/s.Its thickness increases from 3.0 to over 4.5 km from NW towards SE.The primary causes of the velocity inversion are high accumulation rate and subsequent under-compaction of sediments.The velocity at the top of the lower layer is estimated at about 4.5 km/s.Despite strong energy source used (4 x 12L airgun array),no reflections can be observed from deeper levels within the basin.Towards NE the basin is bounded sharply by a clear and deep basement fault (Fault No.1),which seems to cut through the entire crust.A typical continental crust with low-velocity middle crust is found beneath the coast of the western Hainan Island.Its thickness is determined to be 28 km and shows no sign of crustal thinning towards the basin.The sharp change in crustal structure across Fault No.1 indicates that the fault is a strike-slip fault.The crustal structure obtained in this study clearly favors the hypothesis that the YGHB is a narrow pull-apart basin formed by strike-slip faulting of the Red River fault zone.  相似文献   
915.
The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate.Through experiments of plane-stress,elastic,and 2-dimensional finite-element modeling,we evaluated the relationship between plate kinematics and present-day deformation of Luzon Island and adjacent sea areas.The concept of coupling rate was applied to define the boundary velocities along the subduction zones.The distribution of velocity fields calculated in our models was compared with the velocity field revealed by recent geodetic (GPS) observations.The best model was obtained that accounts for the observed velocity field within the limits of acceptable mechanical parameters and reasonable boundary conditions.Sensitivity of the selection of parameters and boundary conditions were evaluated.The model is sensitive to the direction of convergence between the South China Sea and the Philippine Sea plates,and to different coupling rates in the Manila trench,Philippine trench and eastern Luzon trough.We suggest that a change of±15° of the di rection of motion of the Philippine Sea plate can induce important changes in the distribution of the computed displacement trajectories,and the movement of the Philippine Sea plate toward azimuth330° best explains the velocity pattern observed in Luzon Island.In addition,through sensitivity analysis we conclude that the coupling rate in the Manila trench is much smaller compared with the rates in the eastern Luzon trough and the Philippine trench.This indicates that a significant part of momentum of the Philippine Sea plate motion has been absorbed by the Manila trench;whereas,a part of the momentum has been transmitted into Luzon Island through the eastern Luzon trough and the Philippine trench.  相似文献   
916.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic.In the rifting stage,the margin received lacustrine and shallow marine facies sediments.In the post-rifting thermal subsidence,the margin accumulated shallow marine facies and hemipelagic deposits,and the decpwater basins formed.Petroleum systems of deepwater setting have been imaged from seismic data and drill wells.Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea.The deepwater reservoirs are characterized by the deep sea channel fill,mass flow complexes and drowned reef carbonate platform.Profitable capping rocks on the top are mudstoues with huge thickness in the post-rifting stage.Meanwhile,the faults developed during the rifting stage provide a migration path favournble for the formation of reservoirs.The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta,decpwater submarine fan sandstone and reef carbonate reservoirs.  相似文献   
917.
Southward thrusting occurred in Late Oligocene-Early Miocene in southern East Kunlun (昆仑) Mountains formed the South Kunlun thrust (SKT). Permian strata and Triassic rocks were thrusted over the Paleocene-Eocene red-beds of Fenghuoshan (风火山) Group and Oligocene brownish red conglomerate and sandstone of Yaxicuo (雅西错) Group along SKT faults, formed tectonic slices, low-angle thrust faults, multi-scaled outliers, and nappe structures in south of Middle Kunlun fault (MKF). In addition, SKT displacement or shortening is estimated to be ~(30-35) km across Dongdatan (东大滩) valley and East Wenquan (温泉) basin. 39Ar-40Ar dating of chlorite of ductile shear zone along front thrust fault indicates that SKT thrusting occurred at 26.5±2.7 Ma, and fission track dating of apatite from mylonitic granite in SKT gives the age 26±2 Ma, corresponding to initial time of rapid uplift of East Kunlun Mountains. Thrust faults and folds of SKT were covered unconformably by Late Miocene lacustrine strata, and major thrusting of SKT ended before 13.5-14.5 Ma according to regional chronological data in northern Tibetan plateau.  相似文献   
918.
兰健  于非  鲍颖 《海洋科学进展》2005,23(4):408-413
基于美国海军的空间分辨率为0.5°×0.5°月平均的GDEM三维温盐资料,采用P矢量方法,计算了南沙南部海域的三维环流结构。结果表明,南沙南部海域不仅存在多涡结构,而且此多涡结构还存在明显的季节性变化。冬季,存在南沙海槽反气旋式涡、东南沙反气旋式涡和较弱的南沙气旋式涡;夏季,存在南沙反气旋式涡、巴拉望海槽西侧的气旋式涡和东南沙气旋式涡。  相似文献   
919.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   
920.
南海东北部首次成功实施海陆联合深地震探测,填补了海陆过渡带深地震探测的空白. 利用该次海陆联测地震数据,通过数据处理、震相分析、射线追踪、走时模拟等方法,获得了滨海断裂带附近的纵波地壳速度结构,探明了海陆联测剖面中滨海断裂带可能位置. 地壳速度结构为陆壳结构,地壳厚度由陆地向海区逐步变薄;在上地壳下部普遍存在一层速度为5.5~5.9km·s-1、厚度为2.5~4.0km的低速层,并向海区方向减薄,该区未发现明显的高速层. 滨海断裂带为一纵向低速带,位于南澳台东南35km处,对应于重、磁异常带,断裂带断至莫霍面,是华南陆区正常型陆壳与海区减薄型陆壳的分界地壳断裂.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号