首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6001篇
  免费   598篇
  国内免费   661篇
测绘学   149篇
大气科学   423篇
地球物理   1630篇
地质学   1768篇
海洋学   605篇
天文学   1710篇
综合类   208篇
自然地理   767篇
  2024年   8篇
  2023年   38篇
  2022年   87篇
  2021年   109篇
  2020年   132篇
  2019年   152篇
  2018年   110篇
  2017年   153篇
  2016年   203篇
  2015年   195篇
  2014年   257篇
  2013年   243篇
  2012年   166篇
  2011年   286篇
  2010年   213篇
  2009年   481篇
  2008年   476篇
  2007年   465篇
  2006年   479篇
  2005年   380篇
  2004年   322篇
  2003年   318篇
  2002年   269篇
  2001年   249篇
  2000年   269篇
  1999年   247篇
  1998年   236篇
  1997年   114篇
  1996年   95篇
  1995年   106篇
  1994年   87篇
  1993年   60篇
  1992年   44篇
  1991年   31篇
  1990年   29篇
  1989年   24篇
  1988年   14篇
  1987年   20篇
  1986年   15篇
  1985年   17篇
  1984年   18篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1954年   1篇
排序方式: 共有7260条查询结果,搜索用时 15 毫秒
841.
In this work we analyze the spatial structure of Jupiter's cloud reflectivity field in order to determine brightness periodicities and power spectra characteristics together with their relationship with Jupiter's dynamics and turbulence. The research is based on images obtained in the near-infrared (∼950 nm), blue (∼430 nm) and near-ultraviolet (∼260 nm) wavelengths with the Hubble Space Telescope in 1995 and the Cassini spacecraft Imaging Science Subsystem in 2000. Zonal reflectivity scans were analyzed by means of spatial periodograms and power spectra. The periodograms have been used to search for waves as a function of latitude. We present the values of the dominant wavenumbers for latitude bands between 32° N and 42° S. The brightness power spectra analysis has been performed in the meridional and zonal directions. The meridional analysis of albedo profiles are close to a k−5 law similarly to the wind profiles at blue and infrared wavelengths, although results differ from that in the ultraviolet. The zonal albedo analysis results in two distributions characterized by different slopes. In the near infrared and blue wavelengths, average spectral slopes are n1=−1.3±0.4 for shorter wavenumbers (k<80), and n2=−2.5±0.7 for greater wavenumbers, whereas for the ultraviolet n1=−1.9±0.4 and n2=−0.7±0.4, possibly showing a different dynamical regime. We find a turning point in the spectra between both regimes at wavenumber k∼80 (corresponding to L∼1000 km) for all wavelengths.  相似文献   
842.
We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto’s high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.  相似文献   
843.
Ke Zhang  Francis Nimmo 《Icarus》2009,204(2):597-609
We study the orbital behavior of Saturn’s satellites Enceladus and Dione during their passage through the 2:1 mean-motion resonances to constrain their interior structures, parameterized by the quantity k2/Q (assumed constant). Enceladus’ evolution after escape from the second-order e-Enceladus e-Dione resonance requires that (k2/Q)Enceladus<8×10-4, for that QSaturn>18,000. This result is in agreement with [Meyer, J., Wisdom, J., 2008b. Icarus 193, 213-223]. The present-day libration amplitude of Enceladus requires that (k2/Q)Enceladus>1.2×10-4, assuming that QSaturn<105. Dione’s present-day eccentricity indicates that (k2/Q)Dione?3×10-4 for QSaturn>18,000. Assuming Maxwellian viscoelastic behavior, we find that for Enceladus a convective ice shell overlying an ocean is too dissipative to match the orbital constraints. We conclude that a conductive shell overlying an ocean is more likely, and discuss the implications of this result. Dione’s ice shell is also likely to be conductive, but our results are less constraining.  相似文献   
844.
We have developed a parametrization of Jovian moist convection based on a heat engine model of moist convection. In comparison to other moist convection schemes, this framework allows the computation of the total available convective energy TCAPE and the corresponding mass flux M as dynamic variables from the mean atmospheric state. The effects of this parametrization have been investigated both analytically and numerically. In agreement with previous numerical experiments and observations, the inclusion of moist convection leads to heat and water vapor transport from the water condensation level into higher altitudes. The time development of the modeled convective events was found to be strongly influenced by a rapid reduction of kinetic energy and a subsequent lowering of the cumulus tower's top in response to convective heating. We have tested the sensitivity of the scheme to different variations in the fractional cloud coverage and under the inclusion of external radiative forcing towards a stable/unstable temperature profile. While the time development of convective events differs in response to these variations, the general moist convective heating and moistening of the upper troposphere was a robust feature observed in all experiments.  相似文献   
845.
846.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   
847.
848.
We present N -body simulations of dissolving star clusters close to Galactic Centres. For this purpose, we developed a new N -body program called nbody6gc based on Aarseth's series of N -body codes. We describe the algorithm in detail. We report about the density wave phenomenon in the tidal arms which has been recently explained by Küpper, Macleod & Heggie. Standing waves develop in the tidal arms. The wave knots or clumps develop at the position, where the emerging tidal arm hits the potential wall of the effective potential and is reflected. The escaping stars move through the wave knots further into the tidal arms. We show the consistency of the positions of the wave knots with the theory in Just et al. We also demonstrate a simple method to study the properties of tidal arms. By solving many eigenvalue problems along the tidal arms, we numerically construct a one-dimensional coordinate system whose direction is always along a principal axis of the local tensor of inertia. Along this coordinate system, physical quantities can be evaluated. The half-mass or dissolution times of our models are almost independent of the particle number which indicates that two-body relaxation is not the dominant mechanism leading to the dissolution. This may be a typical situation for many young star clusters. We propose a classification scheme which sheds light on the dissolution mechanism.  相似文献   
849.
850.
Stars on eccentric orbits around a massive black hole (MBH) emit bursts of gravitational waves (GWs) at periapse. Such events may be directly resolvable in the Galactic Centre. However, if the star does not spiral in, the emitted GWs are not resolvable for extragalactic MBHs, but constitute a source of background noise. We estimate the power spectrum of this extreme mass ratio burst background (EMBB) and compare it to the anticipated instrumental noise of the Laser Interferometer Space Antenna (LISA). To this end, we model the regions close to an MBH, accounting for mass segregation, and for processes that limit the presence of stars close to the MBH, such as GW inspiral and hydrodynamical collisions between stars. We find that the EMBB is dominated by GW bursts from stellar mass black holes, and the magnitude of the noise spectrum  ( fS GW)1/2  is at least a factor of ∼10 smaller than the instrumental noise. As an additional result of our analysis, we show that LISA is unlikely to detect relativistic bursts in the Galactic Centre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号