首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3342篇
  免费   588篇
  国内免费   747篇
测绘学   309篇
大气科学   289篇
地球物理   1442篇
地质学   1878篇
海洋学   112篇
天文学   9篇
综合类   236篇
自然地理   402篇
  2024年   11篇
  2023年   30篇
  2022年   56篇
  2021年   82篇
  2020年   126篇
  2019年   136篇
  2018年   95篇
  2017年   137篇
  2016年   225篇
  2015年   198篇
  2014年   224篇
  2013年   208篇
  2012年   194篇
  2011年   246篇
  2010年   173篇
  2009年   278篇
  2008年   279篇
  2007年   244篇
  2006年   209篇
  2005年   206篇
  2004年   168篇
  2003年   137篇
  2002年   131篇
  2001年   129篇
  2000年   101篇
  1999年   89篇
  1998年   87篇
  1997年   76篇
  1996年   58篇
  1995年   64篇
  1994年   54篇
  1993年   37篇
  1992年   29篇
  1991年   25篇
  1990年   16篇
  1989年   22篇
  1988年   14篇
  1987年   15篇
  1986年   12篇
  1985年   10篇
  1984年   16篇
  1983年   7篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1954年   1篇
排序方式: 共有4677条查询结果,搜索用时 15 毫秒
111.
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.

Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model.  相似文献   

112.
内蒙古中西部地区土壤水分对沙尘暴的贡献   总被引:2,自引:0,他引:2  
以2001年4月至2002年6月内蒙中部地区逐时观测的土壤水分资料为基础,论证了该区日土壤水分和日平均风速的变化规律,统计分析了日平均风速与土壤水分对沙尘暴的成生综合贡献。得出的主要结论是:①该地区沙尘暴发生时日平均风速的最小值是3.5m/s。如果日平均风速大于8.0m/s,预示着有沙尘暴的发生。②在平均风速大于3.5m/s的条件下,观测样本中18.4%日数发生沙尘暴,而81.6%日数没有发生。说明大风的天气条件不应当被视其为沙尘暴的唯一重要的因子。③在同一地点、同样的风力条件下,在沙尘暴发生时,日平均风速与日平均土壤水分呈明显的反相关变化;而它们的反相关关系不明显时,沙尘暴就很少发生。  相似文献   
113.
Models capable of estimating losses in future earthquakes are of fundamental importance for emergency planners, for the insurance and reinsurance industries, and for code drafters. Constructing a loss model for a city, region or country involves compiling databases of earthquake activity, ground conditions, attenuation equations, building stock and infrastructure exposure, and vulnerability characteristics of the exposed inventory, all of which have large associated uncertainties. Many of these uncertainties can be classified as epistemic, implying—at least in theory—that they can be reduced by acquiring additional data or improved understanding of the physical processes. The effort and cost involved in refining the definition of each component of a loss model can be very large, for which reason it is useful to identify the relative impact on the calculated losses due to variations in these components. A mechanically sound displacement‐based approach to loss estimation is applied to a test case of buildings along the northern side of the Sea of Marmara in Turkey. Systematic variations of the parameters defining the demand (ground motion) and the capacity (vulnerability) are used to identify the relative impacts on the resulting losses, from which it is found that the influence of the epistemic uncertainty in the capacity is larger than that of the demand for a single earthquake scenario. Thus, the importance of earthquake loss models which allow the capacity parameters to be customized to the study area under consideration is highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
114.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
115.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
116.
The organic matter of the surface horizons of soils developed below scrub vegetation in a Mediterranean semi-arid area of great environmental interest (Cabo de Gata-Níjar Natural Park, SE Spain) has been studied. The study mainly concentrates on examining the influence of two vegetation types, one evolved (according to its successional stage), and the other clearly degraded as a result of prior removal of vegetation. In spite of the homogeneity in the results obtained from the analysis of the organic matter from the soils studied, a relationship may be established between vegetation biotype and characteristics and evolution of the soil organic matter. The evolved vegetation results in the presence in the soil of a somewhat more evolved and stable organic matter (demonstrated by certain chemical and microbiological aspects), resulting in a greater degree of humification, thus favouring the protection of the soil and the ecosystem as a whole. Hence, the presence of degraded vegetation might lead to soil degradation, something that is unsustainable in semi-arid areas that are particularly fragile in nature.  相似文献   
117.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   
118.
A new methodology for deriving the uplift load–displacement response of long driven piles in cohesionless soils is proposed. This method accounts for the effects of the friction fatigue processes during pile driving and the existence of locked-in residual stresses at the end of pile driving before commencing the pile load test. A hyperbolic formulation is utilized to simulate the nonlinear load transfer curves (the so-called tz curves). The utility of this technique is demonstrated for a field pullout load test on a driven pile in sand. Predicted and measured load–displacement curves showed good agreement, indicating that this approach yields reasonable results as long as representative input parameters are employed.  相似文献   
119.
Flood stories in the Hebrew Bible and the Koran appear to be derived from earlier flood stories like those in the Gilgamesh Epic and still earlier in the Atrahasis. All would have their source from floods of the Tigris and Euphrates rivers.

The Gilgamesh Epic magnifies the catastrophe by having the flood begin with winds, lightning, and a shattering of the earth, or earthquake. Elsewhere in Gilgamesh, an earthquake can be shown to have produced pits and chasms along with gushing of water. It is commonly observed that earthquake shaking causes water to gush from the ground and leaves pits and open fissures. The process is known as soil liquefaction. Earthquake is also a possible explanation for the verse “all the fountains of the great deep (were) broken up” that began the Flood in Genesis. Traditionally, the “great deep” was the ocean bottom. A more recent translation substitutes “burst” for “broken up” in describing the fountains, suggesting that they erupted at the ground surface and were caused by an earthquake with soil liquefaction. Another relation between soil liquefaction and the Flood is found in the Koran where the Flood starts when “water gushed forth from the oven”. Soil liquefaction observed erupting preferentially into houses during an earthquake provides a logical interpretation if the oven is seen as a tiny house. A case can be made that earthquakes with soil liquefaction are embedded in all of these flood stories.  相似文献   

120.
Numerous studies have been conducted with electrochemical removal of heavy metals from spiked kaolinite. Meanwhile, when moving from kaolinite to real soils, new factors must be taken into account—factors influencing, e.g., the buffering capacity of the soil against acidification and the adsorption/desorption processes of the heavy metals. The present study gives some examples where it is necessary to use an enhancement solution to aid desorption of Cu, Zn and Pb during electrodialytic treatment. Dependent on the composition of the pollution, different choices can be made. In the case of a Cu-polluted calcareous soil, ammonia may be used as enhancement solution, due to the formation of charged complexes between ammonia and Cu. Thus, Cu is mobile at high pH when ammonia is added and Cu can be removed without dissolving the calcareous parts. Zn is also mobilized by ammonia, but to a lesser extent than Cu. In the case of Cu, Zn and Pb at the same time, alkaline ammonium citrate may be a solution. It was shown that this enhancement solution could mobilize these three pollutants, but optimization of concentration and pH of the ammonium citrate is still needed. When choosing a remediation scheme for electrochemical treatment of an actual industrially polluted soil, this scheme must be chosen on basis of characterization of soil and pollution combination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号