首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   74篇
  国内免费   335篇
测绘学   26篇
大气科学   129篇
地球物理   133篇
地质学   539篇
海洋学   25篇
天文学   1篇
综合类   24篇
自然地理   71篇
  2023年   6篇
  2022年   18篇
  2021年   12篇
  2020年   25篇
  2019年   26篇
  2018年   26篇
  2017年   35篇
  2016年   31篇
  2015年   40篇
  2014年   36篇
  2013年   41篇
  2012年   43篇
  2011年   47篇
  2010年   46篇
  2009年   53篇
  2008年   49篇
  2007年   38篇
  2006年   46篇
  2005年   37篇
  2004年   35篇
  2003年   36篇
  2002年   16篇
  2001年   25篇
  2000年   24篇
  1999年   17篇
  1998年   11篇
  1997年   21篇
  1996年   13篇
  1995年   21篇
  1994年   10篇
  1993年   16篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   11篇
  1987年   3篇
  1986年   2篇
  1984年   8篇
  1978年   2篇
  1976年   1篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
21.
被动微波遥感估算雪水当量研究进展与展望   总被引:5,自引:0,他引:5  
车涛  李新 《地球科学进展》2004,19(2):204-210
被动微波遥感可以透过云层,全天候地提供地表一定深度的信息。星载被动微波遥感传感器的时间分辨率很高,在冰冻圈动态研究中有着重要的地位。在最近的二三十年中,大量被动微波遥感的应用都是在美国、加拿大、欧洲等地,而我国在这方面的研究相对较少。首先介绍了被动微波遥感数据在监测积雪方面的国内外研究进展,对现存的雪水当量(SWE)估算算法(和模型)的适用性进行讨论。然后,详细讨论了我国西部的青藏高原地区雪水当量的估算,阐明了利用SSM/I数据估算青藏高原地区雪水当量的复杂性,并指出了其复杂性产生的原因,提出了解决问题的方法,为该地区积雪动态的进一步研究提供了理论依据。  相似文献   
22.
Introduction Sichuan-Yunnan region is a major area with frequent strong earthquakes in Chinese mainland, especially the middle-southern segment of South-North Seismic Zone, where many strong earth-quakes occurred in history. In the past 30 years, Sichuan-Yunnan region has two seismically active periods: one is from Tonghai earthquake in 1970 to Longling-Songpan earthquake in 1976, the other is from Lancang earthquake in 1988 to now. During this two periods, the M=7.7 Tonghai, M=7.1 Dagua…  相似文献   
23.
Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregate is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. We propose that this unusual compaction behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction.  相似文献   
24.
Snow load on mesh systems is complicated by many factors. This paper presents field instrumentation data on snow load variation with temperature, snowfall and snow depth on a mesh system. It was found that snow load pattern on mesh systems changed with temperature even without variation in snow depth. It reached its maximum value when the temperature rose just above freezing to melt the interface. The field data was used to formulate appropriate snow load models for the various conditions of temperature in the field. The snow load models were used to study the performance of a number of mesh systems in North America and estimate the interface friction that was prevalent for the different surface conditions.  相似文献   
25.
Snowpack dynamics through October 2014–June 2017 were described for a forested, sub‐alpine field site in southeastern Wyoming. Point measurements of wetness and density were combined with numerical modeling and continuous time series of snow depth, snow temperature, and snowpack outflow to identify 5 major classes of distinct snowpack conditions. Class (i) is characterized by no snowpack outflow and variable average snowpack temperature and density. Class (ii) is characterized by short durations of liquid water in the upper snowpack, snowpack outflow values of 0.0008–0.005 cm hr?1, an increase in snowpack temperature, and average snow density between 0.25–0.35 g cm?3. Class (iii) is characterized by a partially saturated wetness profile, snowpack outflow values of 0.005–0.25 cm hr?1, snowpack temperature near 0 °C, and average snow density between 0.25–0.40 g cm?3. Class (iv) is characterized by strong diurnal snowpack outflow pattern with values as high as 0.75 cm hr?1, stable snowpack temperature near 0 °C, and stable average snow density between 0.35–0.45 g cm?3. Class (v) occurs intermittently between Classes (ii)–(iv) and displays low snowpack outflow values between 0.0008–0.04 cm hr?1, a slight decrease in temperature relative to the preceding class, and similar densities to the preceding class. Numerical modeling of snowpack properties with SNOWPACK using both the Storage Threshold scheme and Richards' equation was used to quantify the effect of snowpack capillarity on predictions of snowpack outflow and other snowpack properties. Results indicate that both simulations are able to predict snow depth, snow temperature, and snow density reasonably well with little difference between the 2 water transport schemes. Richards' equation more accurately simulates the timing of snowpack outflow over the Storage Threshold scheme, especially early in the melt season and at diurnal timescales.  相似文献   
26.
We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na‐poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric‐forming Na‐rich muscovite is also progressively replaced by fabric‐forming Na‐poor muscovite. The mineralogy of the new phyllonitic fault‐rock produced is dominated by Na‐poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric‐forming Na‐rich muscovite is selectively replaced at high‐strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high‐grade porphyroblasts by weaker Na‐poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na‐rich muscovite‐defined foliation destroys not only the metastable high‐grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.  相似文献   
27.
Deformation of middle crustal shear zones likely varies with time as a result of the stress build-up and release associated with earthquakes and post-seismic deformation, but the processes involved and their microstructural signature in the rock record are poorly understood. We conducted a series of experiments on quartzite at 900 °C to characterize microstructures associated with changes in stress and strain rate, and to investigate the feasibility of carrying out grain size piezometry in natural rocks that experienced analogous changes. Differential stress (referred to simply as “stress”) was varied in two-stage experiments by changing strain rate and by stopping the motor and allowing stress to relax. The two-stage samples preserve a microstructural record that can be interpreted quantitatively in terms of stress history. The microstructure associated with a stress increase is a bimodal distribution of recrystallized grain sizes. The smaller grains associated with the second deformation stage accurately record the stress of the second stage, and the surviving coarse grains remain similar in size to those formed during the earlier stage. The transient microstructure associated with stress decrease is a “partial foam” texture containing a larger concentration of stable 120° triple junctions than occur in samples deformed at a relatively constant strain rate. Our results indicate that microstructures preserved in rocks that experienced relatively simple, two-stage deformation histories can be used to quantitatively assess stress histories.Grain growth rates during deformation are similar to rates observed in previous isostatic growth experiments, supporting theoretical approaches to recrystallized grain size, such as the wattmeter theory (Austin and Evans, 2007), that incorporate static growth rates. From an analysis of the experimental data for quartz recrystallized grain size, we find: 1) Recrystallized grain size quickly reaches a value consistent with ambient deformation conditions. We argue that this explains a good match between average grain sizes predicted by the wattmeter after complete recrystallization and the recrystallized grain sizes of the experiments. 2) The present formulation of the wattmeter overestimates the rates at which porphyroclasts recrystallize by as much as an order of magnitude, and 3) owing to problems with extrapolation of grain growth data for quartz, the wattmeter is not presently applicable to natural samples deformed at low temperatures. We present a simplified flow law for quartz, and suggest that the change in slope of the quartz piezometer at high stress (regime 1) is related to a switch to a linear viscous rheology.  相似文献   
28.
The formation of Ca-rich myrmekites is described in syntectonic syenites crystallized and progressively deformed under granulite facies conditions. The syenites are found in high- and low-strain zones where microstructure and mineral composition are compared. Heterogeneously distributed water-rich, late-magmatic liquids were responsible for strain partitioning into dry and wet high-strain zones at outcrop scale, where contrasting deformation mechanisms are reported. In dry high-strain zones K-feldspar and clinopyroxene are recrystallized under high-T conditions. In wet high-strain zones, the de-stabilization of clinopyroxene and pervasive replacement of relatively undeformed K-feldspar porphyroclasts by myrmekite and subordinate micrographic intergrowths indicate dissolution-replacement creep as the main deformation mechanism. The reworking of these intergrowths is observed and is considered to contribute significantly to the development of the mylonitic foliation and banding. A model is proposed for strain partitioning relating a positive feedback between myrmekite-forming reaction, continuous inflow of late-magmatic liquids and dissolution-replacement creep in the wet zone at the expenses of original mineralogy preserved in the dry zones. Melt-assisted dissolution-replacement creep in syntectonic environments under granulite-facies conditions may extend the field of operation of dissolution-replacement creep, changing significantly the rheology of the lower continental crust.  相似文献   
29.
This article presents the settlement of drilled shafts resulting from their structural deformations. Although drilled shafts are widely used as foundations for settlement-sensitive structures such as bridges and high-rise buildings, the structural deformations of drilled shafts are not typically taken into account in the design process. However, if unexpected structural deformations of drilled shafts cause additional settlement to the foundation, the serviceability of the superstructure can be jeopardized. Unfortunately, very few research efforts have been made to quantify the structural deformation of drilled shafts; this needs to be addressed to accurately predict the settlement of drilled shafts. In this study, we investigate the effect of structural deformation on displacement of axially loaded drilled shafts. Finite element analyses were performed to quantify the structural deformation of drilled shafts. The analysis results indicated that the structural deformation of drilled shafts could be quite significant for long drilled shafts. The main factors that affected the structural deformation of drilled shafts were found to be pile length, the material properties of drilled shafts, and the relative humidity of surrounding soil. An approximate equation is proposed to estimate the long-term deformation of drilled shafts.  相似文献   
30.
Some studies suggest that creep parameters should be determined using a greater quantity of creep test data to provide more reliable prediction regarding the deformation of soft soils. This study aims to investigate the effect of loading duration on model updating. One‐dimensional consolidation data of intact Vanttila clay under different loading durations collected from the literature is used for demonstration. The Bayesian probabilistic method is used to identify all unknown parameters based on the consolidation data during the entire consolidation process, and their uncertainty can be quantified through the obtained posterior probability density functions. Additionally, the optimal models are also determined from among 9 model candidates. The analyses indicate that the optimal models can describe the creep behavior of intact soft soils under different loading durations, and the adopted method can evaluate the effect of loading duration on uncertainty in the creep analysis. The uncertainty of a specific model and its model parameters decreases as more creep data are involved in the updating process, and the updated models that use more creep data can better capture the deformation behavior of an intact sample. The proposed method can provide quantified uncertainty in the process of model updating and assist engineers to decide whether the creep test data are sufficient for the creep analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号