首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2874篇
  免费   365篇
  国内免费   259篇
测绘学   938篇
大气科学   193篇
地球物理   646篇
地质学   814篇
海洋学   227篇
天文学   328篇
综合类   243篇
自然地理   109篇
  2024年   9篇
  2023年   12篇
  2022年   49篇
  2021年   61篇
  2020年   106篇
  2019年   98篇
  2018年   56篇
  2017年   96篇
  2016年   92篇
  2015年   126篇
  2014年   172篇
  2013年   166篇
  2012年   183篇
  2011年   172篇
  2010年   145篇
  2009年   151篇
  2008年   143篇
  2007年   162篇
  2006年   182篇
  2005年   159篇
  2004年   148篇
  2003年   109篇
  2002年   97篇
  2001年   114篇
  2000年   88篇
  1999年   86篇
  1998年   85篇
  1997年   64篇
  1996年   79篇
  1995年   64篇
  1994年   42篇
  1993年   43篇
  1992年   35篇
  1991年   20篇
  1990年   16篇
  1989年   21篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
  1954年   1篇
排序方式: 共有3498条查询结果,搜索用时 78 毫秒
991.
From August 2016 to July 2017, a passive seismic survey was conducted in South Western Iran as a part of a pilot project aimed to improve the imaging in geologically complex areas. Passive seismic methods have shown to be a useful tool to infer the physical properties of the underground geological structures where traditional hydrocarbon exploration methods are challenging. For this purpose, a dense passive seismic network consisting of 119 three-component borehole seismic stations was deployed over an area of 400 km2 around the city of Dehdasht. This paper focuses on the details of the network design, which was devoted to high-resolution seismological applications, including local earthquake tomography and seismic attenuation imaging. In this regard, we describe the instrument types and the station installation procedures used to obtain high-quality data that were used to retrieve three-dimensional models of P- and S-wave velocity and P-wave attenuation in the area using tomographic inversion techniques. We also assess the network performance in terms of the seismic ambient noise levels recorded at each station site, and we revise the horizontal orientation of the sensors using surface waves from teleseismic earthquakes.  相似文献   
992.
A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection.Time series of these ‘‘training events' ' are represented in matrix form and transpose-multiplied to generate timedomain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window(approximately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigenvectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled(50 Hz) data from six observatories, each equipped with threecomponent induction coil magnetometers. We examine a90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California,together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generatednoise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.  相似文献   
993.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   
994.
Spectral decomposition is a powerful tool that can provide geological details dependent upon discrete frequencies. Complex spectral decomposition using inversion strategies differs from conventional spectral decomposition methods in that it produces not only frequency information but also wavelet phase information. This method was applied to a time‐lapse three‐dimensional seismic dataset in order to test the feasibility of using wavelet phase changes to detect and map injected carbon dioxide within the reservoir at the Ketzin carbon dioxide storage site, Germany. Simplified zero‐offset forward modelling was used to help verify the effectiveness of this technique and to better understand the wavelet phase response from the highly heterogeneous storage reservoir and carbon dioxide plume. Ambient noise and signal‐to‐noise ratios were calculated from the raw data to determine the extracted wavelet phase. Strong noise caused by rainfall and the assumed spatial distribution of sandstone channels in the reservoir could be correlated with phase anomalies. Qualitative and quantitative results indicate that the wavelet phase extracted by the complex spectral decomposition technique has great potential as a practical and feasible tool for carbon dioxide detection at the Ketzin pilot site.  相似文献   
995.
Data interpolation is an important step for seismic data analysis because many processing tasks, such as multiple attenuation and migration, are based on regularly sampled seismic data. Failed interpolations may introduce artifacts and eventually lead to inaccurate final processing results. In this paper, we generalised seismic data interpolation as a basis pursuit problem and proposed an iteration framework for recovering missing data. The method is based on non‐linear iteration and sparse transform. A modified Bregman iteration is used for solving the constrained minimisation problem based on compressed sensing. The new iterative strategy guarantees fast convergence by using a fixed threshold value. We also propose a generalised velocity‐dependent formulation of the seislet transform as an effective sparse transform, in which the non‐hyperbolic normal moveout equation serves as a bridge between local slope patterns and moveout parametres in the common‐midpoint domain. It can also be reduced to the traditional velocity‐dependent seislet if special heterogeneity parametre is selected. The generalised velocity‐dependent seislet transform predicts prestack reflection data in offset coordinates, which provides a high compression of reflection events. The method was applied to synthetic and field data examples, and the results show that the generalised velocity‐dependent seislet transform can reconstruct missing data with the help of the modified Bregman iteration even for non‐hyperbolic reflections under complex conditions, such as vertical transverse isotropic (VTI) media or aliasing.  相似文献   
996.
A method for interpolation of multicomponent streamer data based on using the local directionality structure is presented. The derivative components are used to estimate a vector field that locally describes the direction with the least variability. Given this vector field, the interpolation can be phrased in terms of the solution of a partial differential equation that describes how energy is transported between regions of missing data. The approach can be efficiently implemented using readily available routines for computer graphics. The method is robust to noise in the measurements and particularly towards high levels of low‐frequent noise that is present in the derivative components of the multicomponent streamer data.  相似文献   
997.
Linear prediction filters are an effective tool for reducing random noise from seismic records. Unfortunately, the ability of prediction filters to enhance seismic records deteriorates when the data are contaminated by erratic noise. Erratic noise in this article designates non‐Gaussian noise that consists of large isolated events with known or unknown distribution. We propose a robust fx projection filtering scheme for simultaneous erratic noise and Gaussian random noise attenuation. Instead of adopting the ?2‐norm, as commonly used in the conventional design of fx filters, we utilize the hybrid ‐norm to penalize the energy of the additive noise. The estimation of the prediction error filter and the additive noise sequence are performed in an alternating fashion. First, the additive noise sequence is fixed, and the prediction error filter is estimated via the least‐squares solution of a system of linear equations. Then, the prediction error filter is fixed, and the additive noise sequence is estimated through a cost function containing a hybrid ‐norm that prevents erratic noise to influence the final solution. In other words, we proposed and designed a robust M‐estimate of a special autoregressive moving‐average model in the fx domain. Synthetic and field data examples are used to evaluate the performance of the proposed algorithm.  相似文献   
998.
针对最小范数解缠方法的代价函数模型以及迭代效率问题,提出一种符合L0范数准则的高效的二维相位全局最优解缠方法。在对最小范数代价函数模型特征进行分析的基础上,给出一种符合L0范数准则的代价函数,满足在相位不连续边界的切方向上相对法方向具有更强的约束作用,保证解缠迭代处理时连续相位按照代价函数的约束条件进行趋近的同时,不连续边界不会被破坏。为了解决线性方程中低频误差收敛慢的问题,根据最小范数方法独立性的特点,采用数据分块处理方法,注重高频信息以提高迭代处理效率,将低频信息处理转移到数据块间偏移量计算中。实验对比分析表明,新解缠方法在可靠性和效率方面都能够达到较好的水平。  相似文献   
999.
Radio interferometry significantly improves the resolution of observed images, and the final result also relies heavily on data recovery. The Cotton-Schwab CLEAN(CS-Clean) deconvolution approach is a widely used reconstruction algorithm in the field of radio synthesis imaging. However, parameter tuning for this algorithm has always been a difficult task. Here, its performance is improved by considering some internal characteristics of the data. From a mathematical point of view, a peak signal-to-noise-based(PSNRbased) method was introduced to optimize the step length of the steepest descent method in the recovery process. We also found that the loop gain curve in the new algorithm is a good indicator of parameter tuning.Tests show that the new algorithm can effectively solve the problem of oscillation for a large fixed loop gain and provides a more robust recovery.  相似文献   
1000.
国家应急测绘保障能力建设项目总体技术设计   总被引:2,自引:1,他引:1  
赵勇  武昊  王中祥  朱杰 《测绘通报》2019,(9):121-127
我国是自然灾害多发国家,给人们生命、财产安全造成了极大威胁。应急测绘是我国突发事件应急体系和综合防灾减灾工作体系的重要组成部分。近年来,应急测绘装备和技术水平取得了巨大进展,构建规模化、协同化、覆盖全国的应急测绘保障能力已成为应急测绘保障工作的必然趋势。本文针对应急测绘保障工作的特点,分析了应急测绘业务流程和数据流程,提出了国家应急测绘保障能力建设的总体架构、建设内容设计和系统接口设计,讨论了项目建设的预期效果和下一步努力方向。相关研究可为进一步做好应急测绘保障工作的顶层设计、加强科学统筹工作奠定基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号