首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   13篇
  国内免费   22篇
测绘学   3篇
大气科学   1篇
地球物理   31篇
地质学   15篇
海洋学   100篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   14篇
  2008年   18篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   14篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有156条查询结果,搜索用时 234 毫秒
71.
72.
后向散射强度与温跃层关系研究   总被引:1,自引:0,他引:1  
2003年8月12-13日,用300kHz的坐底式声学多普勒海流剖面仪(ADCP)在台湾海峡北部海区进行了观测。根据回声强度计算得到的后向散射强度具有明显的日变化,这是浮游动物的垂直迁移造成的。此外,后向散射强度还与叶绿素、浊度和温度梯度有关,其中叶绿素、浊度和温度梯度对后向散射强度的贡献分别是1.41,7.73和3.54dB。温度梯度最大值的深度与后向散射强度第一个峰值的深度一致,故根据后向散射强度能推断出温跃层的位置。  相似文献   
73.
The relations between the volume transport and the sea level difference across the Tsushima Straits have been investigated using current data provided by ADCP mounted on the ferry Camellia, plying between Hakata and Pusan. Empirical formulas to deduce the volume transports using the sea level differences across the eastern and western channels are proposed, considering the seasonal variation of the vertical current structure. The interannual variation of volume transport through the Tsushima Straits for 37 years from 1965 to 2001 is estimated using the empirical formulas. The total volume transport through the Tsushima Straits, averaged for 37 years, is 2.60 Sv and those of the eastern and western channels are 1.13 Sv and 1.47 Sv, respectively. The total volume transport through the Tsushima Straits tends to decrease with a roughly 15 year variation until 1992, then begins to increase.  相似文献   
74.
Water transport at subtidal frequencies in the Marsdiep inlet   总被引:1,自引:0,他引:1  
Long-term time series of subtidal water transport in the 4-km wide Marsdiep tidal inlet in the western Dutch Wadden Sea have been analysed. Velocity data were obtained between 1998 and the end of 2002 with an acoustic Doppler current profiler that was mounted under the hull of the ferry ‘Schulpengat’. Velocities were integrated over the cross-section and low-pass filtered to yield subtidal water transport. A simple analytical model of the connected Marsdiep and Vlie tidal basins was extended to include wind stress and water-level and density gradients and applied to the time series of subtidal water transport. In accordance with the observations, the model calculates a mean throughflow from the Vlie to the Marsdiep basin. The mean water transport through the Marsdiep inlet consists of an export due to tidal stresses and freshwater discharge and an import due to southwesterly winds. In contrast, the variability in the subtidal water transport is mainly governed by wind stress. In particular, southwesterly winds that blow along the main axis of the Marsdiep basin force a throughflow from the Marsdiep to the Vlie basin, whereas northwesterly winds that blow along the main axis of the Vlie basin force a smaller mean water transport in the opposite direction. The contribution of remote sea-level change to the water transport, or coastal sea-level pumping, has been found to be much smaller than the contribution of local wind stress.  相似文献   
75.
The water column flow velocity of 36 river sections in the river reach between Hankou (Wuhan) and Wuxue of the middle-lower Changjiang River. Their cross sectional distribution patterns in relation to the river channel morphologies were examined by using ship-mounted ADCP (Acoustic Doppler Current Profiler) instrument. The results indicate four (I-VI) types of river channel morphology associated flow patterns: I—laterally deepening riverbed topographic pattern; II—symmetrical to asymmetrical riverbed topographic pattern; III—relative flat riverbed topographic pattern, and IV—sandbar supported riverbed topographic pattern. All these correspond to the different patterns of flow velocity distribution. The maximum flow velocity is usually related to the deeper water depth, but irregular water column distribution of flow current velocity results often from the vortices’ current associated with river knots. Deeper river water depth is usually identified in the river reach located slightly downstream to the river knot, where faster flow velocity occurs. Downward change in flow velocity fits semi-log law, showing an exponential decreasing flow current with the maximum flow velocity near the water surface. However, in the river reach near the river knots, the water column distribution of flow current velocity does not fit the semi-log law, showing the irregular flow current pattern. This study, in context of river catchment management, highlights the controls of riverbed morphology to the flow current structure, which will shed light on the post study of Three Gorges damming in 2009.  相似文献   
76.
Ship-based acoustic Doppler current profiler (S-ADCP) technology, used in survey mode, has enabled near- synoptic views of the in situ 3-D current field in the KwaZulu-Natal (KZN) Bight to be elucidated for the first time. Data acquired by the research vessels RS Africana and RS Algoa in June 2005, September 2007, March 2009 and July 2010 are presented. Each S-ADCP dataset showed similar circulation characteristics whereby the continental slope and outer shelf of the KZN Bight were strongly influenced by the south-westward flowing Agulhas Current. This was particularly evident in the extreme north between Cape St Lucia and Richards Bay where the shelf is narrowest and velocities exceeded 200 cm s?1. The widening of the bight to the south moves the Agulhas Current further from the coast, resulting in a diminishing velocity gradient on the outer shelf which terminates around the midshelf axis. The southern region of the bight was mostly influenced by the Durban cyclonic eddy (Durban Eddy), and in June 2005 and September 2007, by a cyclonic ‘swirl’ that occupied the entire southern half of the KZN Bight, the latter identified by a combination of S-ADCP-, satellite-derived SST- and ocean colour data. Satellite data showed low-chlorophyll offshore water to move into this swirl and northwards along the inner- and midshelf, reaching the Thukela River. Inner-shelf circulation north of the Thukela River was weak (<20 cm s?1) and highly variable. Satellite-tracked surface drogues deployed in the Durban Eddy found their way into the northward coastal current in the KZN Bight, with velocities exceeding 90 cm s?1 at times. The drogues also highlighted the strong influence of wind, especially in the northern bight between Durnford Point and Cape St Lucia, with residence times on the shelf exceeding 14 days, suggesting this region to be of biological importance particularly for recruitment.  相似文献   
77.
78.
韩继伟  符伟杰  唐跃平  邵军 《水文》2014,34(6):9-13
如何快速准确监测河道流量,一直是水文学者研究的对象。ADCP是一种先进的流量测验仪器。本文分析ADCP流量测验机理,提出ADCP流量生成模型的概念,分析出ADCP流量生成模型的结构,构建了ADCP流量生成模型。根据流量生成模型研制的ADCP流量计算程序计算结果和目前应用广泛的Winriver软件计算结果极其相似。ADCP流量生成模型概念准确、结构合理,数据处理计算方法得当、研制的程序可靠。这为ADCP国产化奠定了坚实的基础。  相似文献   
79.
张志林  邓乾焕  朱巧云  钱峰 《水文》2011,31(2):62-68
洋山深水港地形差异大,流态复杂,在宽阔的西口门和窄深东口门,以传统方法同步开展悬沙输移监测十分困难。详述了在颗珠山汊道应用ADCP走航测沙的实现方法,结论显示,与传统代表垂线法成果相比,通过ADCP声反向散射信号计算的垂线平均含沙量,其对比标准差约为6%,随机不确定度在12%(置信水平为95%)左右,误差分布基本成正态,两种方法之间的断面输沙率相关系数达到0.96,可见,利用ADCP的声反向散射信号,只要标定得当,在洋山港区得到的垂线平均含沙量和断面输沙率是可信的,该技术将为洋山港区关键控制断面悬沙监测提供新思路。  相似文献   
80.
The dynamics of Bonifacio strait (south of Corsica) are investigated in a comprehensive study at long term from two set of data. First, by moored ADCP put in middle of the strait during six weeks (4 November 2004 to 7 January 2005), at a depth of 40 m and at few Kilometers from coast. Second, by velocity profiles obtained with a 314.4 kHz Acoustic Doppler Current Profiler (ADCP) during seven cruises (Cyrce) covering entirety strait. From moored ADCP data, a study is made on time correlation between wind stress and current. Shipboard ADCP data permits to obtain a general view in totality of strait and mostly to observe spatial variability. This study shows that the circulation is governed both by wind stress and by general circulation of Mediterranean Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号