首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23100篇
  免费   4176篇
  国内免费   6126篇
测绘学   4286篇
大气科学   4536篇
地球物理   5519篇
地质学   10064篇
海洋学   3358篇
天文学   230篇
综合类   1940篇
自然地理   3469篇
  2024年   93篇
  2023年   273篇
  2022年   803篇
  2021年   949篇
  2020年   1113篇
  2019年   1292篇
  2018年   1075篇
  2017年   1236篇
  2016年   1297篇
  2015年   1439篇
  2014年   1514篇
  2013年   1732篇
  2012年   1602篇
  2011年   1654篇
  2010年   1303篇
  2009年   1452篇
  2008年   1476篇
  2007年   1562篇
  2006年   1486篇
  2005年   1317篇
  2004年   1167篇
  2003年   1000篇
  2002年   920篇
  2001年   778篇
  2000年   721篇
  1999年   649篇
  1998年   592篇
  1997年   520篇
  1996年   457篇
  1995年   422篇
  1994年   374篇
  1993年   314篇
  1992年   191篇
  1991年   167篇
  1990年   111篇
  1989年   83篇
  1988年   84篇
  1987年   51篇
  1986年   27篇
  1985年   29篇
  1984年   15篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   3篇
  1976年   3篇
  1972年   1篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.  相似文献   
992.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   
993.
An eco-hydrodynamic model was used to estimate the carrying capacity of pollutant loads and response of water quality to environmental change in Yeoja Bay, Korea. An energy-system model also was used to simulate the fluctuation in nutrients and organic matter in the bordering wetland. Most water quality factors showed a pulsed pattern, and the concentrations of nutrients and organic matter of seawater increased when input loads of nutrients increased due to freshwater discharge. The well-developed tidal zones and wetlands in the northern area of the bay were highly sensitive to input loads. Residence times of water, chemical oxygen demand (COD), and dissolved inorganic nitrogen (DIN) within the bay were estimated to be about 16 days, 43.2 days, and 50.2 days, respectively. Water quality reacted more sensitively to the effects of nitrogen and phosphorus input than to COD. A plan to reduce the present levels of COD and dissolved inorganic phosphorus (DIP) by 20–30% and DIN by at least 50% in pollutant loads is needed for satisfying the target water quality criteria. The natural removal rate of nutrients in wetlands by reeds was assessed to be approximately 10%.  相似文献   
994.
Large-scale dune erosion tests to study the influence of wave periods   总被引:1,自引:0,他引:1  
Large-scale physical model tests were performed to quantify the effects of the wave period on dune erosion. Attention was focussed on 2D cross-shore effects in a situation with sandy dunes and extreme water levels and wave conditions. Besides profile measurements, detailed measurements in time and space of water pressure, flow velocities and sediment concentrations were performed in the near near-shore area. It was concluded that a longer wave period leads to a larger dune erosion volume and to a larger landward retreat of the dune face. Tests with double-peaked wave spectra showed that the influence of the spectral shape on dune erosion was best represented by the Tm − 1,0 spectral mean wave period, better than the peak wave period, Tp. The effect of the wave period on dune erosion was implemented in a dune erosion prediction method that estimates erosion volumes during normative storm conditions for the Dutch coast. More details of the measurements and additional analyses of physical processes are described in an accompanying paper by Van Thiel de Vries et al. [Van Thiel de Vries, J.S.M., van Gent, M.R.A., Reniers, A.J.H.M. and Walstra, D.J.R., submitted for publication. Analysis of dune erosion processes in large scale flume experiments, In this volume of Coastal Engineering.].  相似文献   
995.
Recognising the importance of understanding sediment dynamics to evaluate the status of a coastal lagoon environment, this work has been focused on the investigation of the hydrodynamic and sediment transport processes occurring in such basins. In order to describe the lagoon system, a modelling approach combining hydrodynamics, waves and sediment dynamics has been developed. The framework of the numerical model consists of a finite element hydrodynamic model, a third generation finite element spectral wave model and a sediment transport and morphodynamic model for both cohesive and non-cohesive sediments. The model adopts the finite element technique for spatial integration, which has the advantage to describe more accurately complicated bathymetry and irregular boundaries for shallow water areas. The developed model has been applied to test cases and to a very shallow tidal lagoon, the Venice Lagoon, Italy. Numerical results show good agreement with water level, waves and turbidity measurements collected in several monitoring stations inside the Lagoon of Venice. Such a model represents an indispensable tool in analysing coastal problems and assessing morphological impacts of human interference.  相似文献   
996.
997.
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.  相似文献   
998.
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p<0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to check the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1) and potential energy (X2) significantly impact (p<0.0001) the amplitude-based reflected rate; the P-values for the deviance and Pearson are all >0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height (X1) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model.Investigation of 6 predictive powers (R2, Max-rescaled R2, Somers'D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.  相似文献   
999.
The sea level of Northeast Atlantic Ocean is calculated for the period between 1958 and 2001 using a state-of-the-art barotropic model with a grid size of 10′ × 15′ (long × lat). The model includes astronomic effects, considering seven components of the tide, and the meteorological effects of wind and atmospheric pressure, allowing obtaining the astronomic tide, the atmospheric residuals and the non-linear addition of both components of sea level.  相似文献   
1000.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号