首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3973篇
  免费   1084篇
  国内免费   102篇
测绘学   4篇
大气科学   1篇
地球物理   4109篇
地质学   775篇
海洋学   153篇
天文学   8篇
综合类   29篇
自然地理   80篇
  2024年   18篇
  2023年   62篇
  2022年   95篇
  2021年   76篇
  2020年   143篇
  2019年   149篇
  2018年   123篇
  2017年   148篇
  2016年   155篇
  2015年   151篇
  2014年   265篇
  2013年   182篇
  2012年   125篇
  2011年   181篇
  2010年   182篇
  2009年   246篇
  2008年   260篇
  2007年   214篇
  2006年   222篇
  2005年   197篇
  2004年   168篇
  2003年   162篇
  2002年   191篇
  2001年   135篇
  2000年   140篇
  1999年   121篇
  1998年   133篇
  1997年   126篇
  1996年   170篇
  1995年   149篇
  1994年   103篇
  1993年   107篇
  1992年   56篇
  1991年   47篇
  1990年   43篇
  1989年   28篇
  1988年   22篇
  1987年   17篇
  1986年   4篇
  1985年   3篇
  1984年   11篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   8篇
  1954年   6篇
排序方式: 共有5159条查询结果,搜索用时 15 毫秒
31.
Mud volcanoes recently discovered on the offshore Calabrian Arc are investigated at two sites 60 km apart, in water depths of 1650--2300 m, using swath bathymetry, 2D&3D multichannel seismic and cores. The seabed and subsurface data provide information on their formation and functioning in relation to tectonic activity during the rapid Plio-Quaternary advance of the accretionary prism. Fore-arc extension and thrust-belt compression are seen to have involved two main phases of activity, separated by a regional unconformity recording a mid-Pliocene (3.5–3.0 Ma) tectonic reorganization. The two sites of mud volcanism lie in contrasting tectonic settings (inner fore-arc basin vs central fold-and-thrust belt) and record differing forms of seabed extrusive activity (twin mud cones and a caldera vs a broad mud pie). At both sites, subsurface data show that mud volcanism took place throughout the second tectonic phase, since the late Pliocene; differing forms of mud extrusion were accompanied by subsidence to form depressions beneath and within extrusive edifices up to 1.5 km thick. The basal subsidence depressions point to sources within the succession of thrusts underlying the inner to central Arc, consistent with microfossils within cored mud breccias from both sites that are derived from strata as old as Late Cretaceous.  相似文献   
32.
Seismic images of a collision zone offshore NW Sabah/Borneo   总被引:2,自引:0,他引:2  
Multichannel reflection seismic data from the southern South China Sea, refraction and gravity modelling were used to investigate the compressional sedimentary structures of the collision-prone continental margin off NW Borneo. An elongated imbricate deepwater fan, the toe Thrust Zone bounds the Northwest Borneo Trough to the southeast. The faults separating the individual imbricates cut through post-Early Miocene sediments and curve down to a carbonate platform at the top of the subsiding continental Dangerous Grounds platform that forms the major detachment surface. The age of deformation migrates outward toward the front of the wedge. We propose crustal shortening mechanisms as the main reason for the formation of the imbricate fan. At the location of the in the past defined Lower Tertiary Thrust Sheet tectonostratigraphic province a high velocity body was found but with a much smaller extend than the previously defined structure. The high velocity structure may be interpreted either as carbonates that limit the transfer of seismic energy into the sedimentary layers beneath or as Paleogene Crocker sediments dissected by remnants of a proto-South China Sea oceanic crust that were overthrust onto a southward migrating attenuated continental block of the Dangerous Grounds during plate convergence.  相似文献   
33.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   
34.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   
35.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   
36.
Bone Gulf is one of the inter-arm basins of the unusual K-shaped island of Sulawesi. Its age, character and origin are disputed. This study is based on recently acquired 2D seismic lines, seabed multibeam mapping and limited well data, and is linked to stratigraphy on land. The gulf is probably underlain by pre-Neogene volcanogenic, sedimentary, metamorphic and ultramafic rocks, and includes crust of Australian origin. We favour basin initiation in the Miocene rather than Eocene, by extension associated with strike-slip deformation. The main basin trends N–S and is divided into several sub-basins and highs. The highs segment the gulf and their WNW–ESE orientations reflect pre-Neogene basement structures. They are interpreted as strike-slip fault zones active at different times in the Neogene. A southern high was active relatively early, whereas further north there is evidence of young displacements during the Late Neogene. These are visible on the seabed above a high linked to the Kolaka Fault on land. Early basin-bounding faults are oriented NNW–SSE and record extension and strike-slip movements, like the sub-parallel Walanae Fault of South Sulawesi which can be traced offshore into extensional faults bounding the young and narrow Selayar Trough. Sediment in the basins came mainly from the north with contributions from both west and east. Carbonate deposits formed at the margins while deeper marine sediments were deposited in the axial parts of the gulf. An Early Pliocene unconformity can be mapped across the study area marking major uplift of Sulawesi and subsidence of Bone Gulf. This regional event caused major influx of clastic sediments from the north, development of a southward-flowing canyon system, and back-stepping and drowning of carbonates at the basin margins. Hydrocarbons are indicated by seeps, and Bone Gulf has potential sources, reservoirs and seals, but the complex faulting history is a risk.  相似文献   
37.
The late Pleistocene–Holocene stratigraphic architecture on the steep and narrow shelf off Nha Trang, central Vietnam has been explored by high resolution seismic profiles integrated with sediment core data. Sequence stratigraphic results reveal five major seismic units and three bounding surfaces which are composed of two distinctive sequences. Those sequences are bounded by two regional unconformities (SB1, SB2) which have been formed in respond to different sea-level regimes. The revealed relict beach–ridge deposits at water depth of about ∼130 m below the present water depth indicate that the Last Glacial Lowstand (LGM) sea-level in this area was lower than in neighboring areas and it probably resulted from subsidence due to high sedimentation rate and/or neotectonic movements of the East Vietnam Fault System. The late Pleistocene high amplitude of sea-level change during a long fourth-order and superimposed by shorter fifth-order cycle is the principal factor in reorganizing the formation of the Nha Trang continental shelf sequence. Other local controlling factors as fluctuations in sediment supply, morphological variations of the LGM surface, subsidence rate and hydrodynamic conditions provided the distinctive features of the Nha Trang shelf sequence stratigraphic model in comparison with neighboring other areas.  相似文献   
38.
Modern reef (the Great Barrier Reef and Ryukyu Reef) distribution in the Indo-Pacific region is strongly controlled by warm currents (East Australian and Kuroshio Currents) that radiate from the Indo-Pacific Warm Pool. The modern distribution of reefs (south of 15°S) on the Western Australian shelf is related to the presence of the warm Leeuwin Current. However, the age of the reefs south of 15°S, and hence their temporal relationship to the Leeuwin Current, has been largely unknown. Seismic and subsurface stratigraphic data show that reef growth and expansion on the Northwest Shelf of Australia began in the Middle Pleistocene (∼0.5 Ma). The oldest ooids in the region are approximately synchronous with reef growth. We suggest a two stage process for the spread of reefs to higher latitudes on the Western Australian coast; first an increase in Leeuwin Current activity at approximately 1 Ma brought warm waters and a tropical biota to the region; and second, increased aridity after ∼0.6 Ma led to a decline in clastic input and increased alkalinity, triggering ooid formation and reef expansion to higher latitudes associated with the switch to higher amplitude glacio-eustatic cycles at the end of the Middle Pleistocene Transition. The timing and mechanisms for reef expansion south along the Western Australian coast has implications for the origin of the Eastern Australian Middle Pleistocene Great Barrier Reef, the New Caledonia Barrier Reef and Japanese Ryukyu Reef systems.  相似文献   
39.
Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.  相似文献   
40.
Seafloor mounds are potential geohazards to offshore rig emplacement and drilling operations and may contain evidence of underlying petroleum systems. Therefore, identifying and mapping them is crucial in de-risking exploration and production activities in offshore domains.A 738 km2 high resolution three-dimensional seismic dataset was used to investigate the occurrence, seismic characteristics and distribution of features interpreted as seafloor and buried sediment mounds, at water-depths of 800–1600 m, on the western Niger Delta slope. Fifteen seafloor mounds and eighteen shallowly buried mounds were identified. The seafloor mounds are characterised by lower seismic amplitude anomalies than the surrounding seabed sediments, and overlie vertical zones of acoustic blanking. The buried mounds in contrast are characterised by high amplitude anomalies; they also directly overlie sub-vertical zones of acoustic blanking. Seismic evidences from the features, their distribution patterns and tectono-stratigraphic associations suggest that their formation was controlled by the juxtaposition of buried channels and structural highs and their formation caused by focused fluid flow and expulsion of entrained sediments at the seabed.Considering the acoustic and geometrical characteristics of the mounds and comparing them with mound-shaped features from around the world, we conclude that the mounds most likely comprise heterolithic seafloor extrusions of muds and sands from the Agbada Formation with gas and possibly oil in some of the pore space giving rise to the acoustic characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号