首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4451篇
  免费   1271篇
  国内免费   318篇
测绘学   22篇
大气科学   8篇
地球物理   4129篇
地质学   1454篇
海洋学   204篇
天文学   24篇
综合类   80篇
自然地理   119篇
  2024年   10篇
  2023年   30篇
  2022年   83篇
  2021年   92篇
  2020年   160篇
  2019年   193篇
  2018年   162篇
  2017年   189篇
  2016年   194篇
  2015年   200篇
  2014年   321篇
  2013年   235篇
  2012年   168篇
  2011年   240篇
  2010年   225篇
  2009年   318篇
  2008年   328篇
  2007年   267篇
  2006年   273篇
  2005年   237篇
  2004年   204篇
  2003年   196篇
  2002年   212篇
  2001年   155篇
  2000年   158篇
  1999年   135篇
  1998年   142篇
  1997年   140篇
  1996年   167篇
  1995年   153篇
  1994年   108篇
  1993年   102篇
  1992年   59篇
  1991年   40篇
  1990年   35篇
  1989年   29篇
  1988年   21篇
  1987年   11篇
  1986年   4篇
  1985年   3篇
  1984年   11篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   8篇
  1954年   6篇
排序方式: 共有6040条查询结果,搜索用时 46 毫秒
101.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   
102.
High-resolution seismic data (onshore and offshore), geophysical borehole data as well as detailed lithofacies from airlift boreholes were acquired in northern Netherlands on and around the island of Ameland. Marine and land seismic data combined with information from land boreholes have been explored with the objective of providing a sedimentary model. Qualitative seismic facies analysis of the valley fill commonly shows a thin unit with high amplitude reflectors at the base. Thick units of variable seismic facies (transparent to high amplitude) occur higher up in the sequence. Onlap is common at mid–upper levels within the sandy valley fill (with clay in mm layering), and a transparent seismic facies, corresponding to firm clays, is common at the top. Almost all lithological unit boundaries recognised within core parameters correspond with seismic unconformities within error margins. Subunits contain multiple cyclical trends in gamma ray and grain size. Cyclical trends show lower order fluctuations in gamma radiation on a scale of less than 1 m. Gamma-ray pattern variability between units, e.g. in general coarsening-up or fining-up units, suggests migration of subaqueous outwash fans or ice margin fluctuations. Seismic results could support a headward excavation and backfilling process suggested by Praeg [Morphology, stratigraphy and genesis of buried Elsterian tunnel valleys in the southern North Sea basin [PhD thesis]: University of Edinburgh, 207 pp.; Journal of Applied Geophysics, (this volume)] as being responsible for the formation of buried valleys. On a lithological scale, a more complicated, detailed and cyclical pattern arises. Catastrophic processes are considered unlikely as being responsible for the infill sequence because of the observed small-scale facies variability and because of the presence of diamicton layers. Diamicton layers at the base of basal unconformities as well as higher in sequence could suggest subglacial deformation by grounded ice before and during the valley-fill process.  相似文献   
103.
We prove that rays in linearly elastic anisotropic nonuniform media obey Fermat's principle of stationary traveltime. First, we formulate the concept of rays, which emerges from the Hamilton equations. Then, we show that these rays are solutions of the variational problem stated by Fermat's principle. This proof is valid for all rays except the ones associated with infection points on the phase-slowness surface.  相似文献   
104.
Practical VTI approximations: a systematic anatomy   总被引:3,自引:0,他引:3  
Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000) 919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin, A., 2001. Comparison of v(θ) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54 (1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994) 1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 106–109).  相似文献   
105.
Seismic reflection methods provide continuous access both to stratigraphy (vertical) and to subsurface morphology (horizontal), for which the scales of interest may differ by orders of magnitude. Seismic surveys of Quaternary successions have generally sought to optimise vertical resolution, through the use of higher source frequency content. Here, I show that low-frequency bandwidth is not necessarily a limiting factor for the seismic resolution of glacigenic morpho-sedimentary features. Observations are presented from a buried network of large mid-Pleistocene (Elsterian) tunnel-valleys in the southern North Sea Basin, across a 100×130 km study area with water depths less than 30 m. Low-frequency 2D and 3D seismic multi-channel data, acquired for deeper hydrocarbon exploration, are compared with previously available high-frequency single- and multi-channel profiles (5–15 km grid spacing). The low-frequency data contribute to a new understanding of the basal morphology and fill stratigraphy of the tunnel-valleys, in part due to higher data densities (≥1 km grid spacing), but also to improved imaging of reflectors at depth. The tunnel-valleys are seen to be overdeepened troughs, shallow (≤0.5 km) relative to their widths (≤6 km). The basal unconformity defines a series of arborescent elements, convergent to the south; erosional overlap by younger elements to the north has resulted in anastomosing patterns in places. The fill is dominated by axially downlapping clinoforms, descending to the north, onlapped and overlain by subhorizontal reflectors. Well data show that sand-dominated glaciofluvial sediments are overlain by glaciolacustrine to marine muds. Better definition of the clinoforms on low- versus high-frequency multi-channel data is suggested to reflect the coarse spatial scale of the backset glaciofluvial strata. The results support a simple interpretation of time-transgressive tunnel-valley formation by coeval glaciofluvial erosion and backfill beneath the outer tens of kilometres of the northward receding Elsterian ice sheet margin. Comparable submarginal interpretations have been proposed for drainage features (tunnel-valleys and eskers) of the last deglaciation of both northern Europe and North America using integrated geomorphologic and stratigraphic methods. Commercial 2D and 3D seismic data are widely available from exploration areas such as the North Sea and are argued to constitute an underexploited resource for Quaternary research.  相似文献   
106.
This paper proposes a simple lattice model for collapse analysis of RC bridges subjected to earthquakes by using the extended distinct element method (EDEM). In the model, a concrete element consists of lumped masses connected to one another by springs, and a reinforcement bar is represented by a discrete model or an integrated model. The proposed lattice model is simple but its parameters are reasonably defined. It has fewer element nodes and connecting springs, which will be of benefit by shortening the CPU time. The processes to determine the initial stiffness of concrete and steel springs, the parameters of the constitutive model and the fracture criteria for springs are described. A re‐contact spring model is also proposed to simulate the re‐contact of the concrete after fracture of springs; and a general grid searching method is used to decrease the CPU time for judging re‐contact after fracture. The lattice model is assessed by numerical simulations and experiments. As an application, a damaged single‐column pier subjected to the Kobe Earthquake in 1995 is analysed by EDEM with the proposed model. The simulation results indicate that the proposed model predicts well qualitatively the collapse process of RC bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
107.
A hybrid indirect boundary element – discrete wavenumber method is presented and applied to model the ground motion on stratified alluvial valleys under incident plane SH waves from an elastic half-space. The method is based on the single-layer integral representation for diffracted waves. Refracted waves in the horizontally stratified region can be expressed as a linear superposition of solutions for a set of discrete wavenumbers. These solutions are obtained in terms of the Thomson–Haskell propagators formalism. Boundary conditions of continuity of displacements and tractions along the common boundary between the half-space and the stratified region lead to a system of equations for the sources strengths and the coefficients of the plane wave expansion. Although the regions share the boundary, the discretization schemes are different for both sides: for the exterior region, it is based on the numerical and analytical integration of exact Green's functions for displacements and tractions whereas for the layered part, a collocation approach is used. In order to validate this approach results are compared for well-known cases studied in the literature. A homogeneous trapezoidal valley and a parabolic stratified valley were studied and excellent agreement with previous computations was found. An example is given for a stratified inclusion model of an alluvial deposit with an irregular interface with the half-space. Results are displayed in both frequency and time domains. These results show the significant influence of lateral heterogeneity and the emergence of locally generated surface waves in the seismic response of alluvial valleys.  相似文献   
108.
The devastating earthquake on 26 January 2001 at Bhuj, India, resulted in large-scale death and destruction of properties of several million US dollars. The moment magnitude of the earthquake was 7.7 and its maximum focal intensity exceeded X in MM scale. The rate of aftershocks of this earthquake, recorded at Gauribidanur seismic array station (GBA), shows a monotonic decay with time superposed with oscillations. For the Indian continent the Lg phase is a prominent arrival at regional distances. The estimate of Lg amplitude is obtained by optimally fitting the Lg wave train to a exponential decay curve. The logarithm of these amplitudes and logarithm of root mean square (rms) value of actual amplitudes of the Lg are calibrated with USGS mb to create a local mbLg magnitude scale. The energy released from these aftershocks is calculated from the rms value of Lg phase. The plot of cumulative energy release with time follows the power law of the form tp, superposed with oscillations. The exponent of the power law, p, is estimated both by a time-window scanning method and by an interpolation method. The value of p is 0.434 for time-window scanning method and 0.432 for the interpolation method. The predominant periods found in the oscillatory part of the cumulative energy, obtained by differencing the observed from the power law fit, are 10.6, 7.9, 5.4, 4.6 and 3.5 h for time-window scanning method. The corresponding periods for interpolation method are 13.4, 11.5, 7.4, 4.2, 3.5, 2.6 and 2.4 h.  相似文献   
109.
根据地下资源开发地区岩层与地表移动机理,研究了地面沉陷时路基产生的破坏影响,分析、总结了路基沉陷特征,给出了确定路基和矿柱强度及稳定性的验算方法,以及路基出现坍塌或滑坡等灾害事故的评估方法,提出了地面沉陷区路基防治技术,并列举了治理路基沉陷的例子。  相似文献   
110.
Shallow seismic measurements in harzburgite from the Oman ophiolite performed in a zone where the maximum horizontal anisotropy is expected (vertical foliation and horizontal lineation) point to a dominant dependence of seismic properties on fracturing.

Optical microscopy studies show that microcracks are guided by the serpentine (lizardite) penetrative network oriented subparallel to the harzburgite foliation and subperpendicular to the mineral lineation, and that serpentine (lizardite) vein filling has a maximum concentration of (001) planes parallel to the veins walls. The calculated elastic properties of the oriented alteration veins filled with serpentine in an anisotropic matrix formed by oriented crystals of olivine and orthopyroxene are compared with seismic velocities measured on hand specimens.

Laboratory ultrasonic data indicate that open microcracks are closed at 100 MPa pressure, e.g. (J. Geophys. Res. 65, (1960) 1083) and (Proc. ODP Sci. Results Leg 118, (1990) 227). Above this pressure, laboratory measurements and modeling show that P-compressional and S-shear wave velocities are mainly controlled by the mineral preferred orientation. Veins sealed with serpentine are effective in slightly lowering P and S velocities and increasing anisotropy. The penetrative lizardite network does not affect directly the geometry of seismic anisotropy, but contributes indirectly in the fact that this network controls the microcrack orientations.

Comparison between seismic measurements of peridotite and gabbro in the same conditions suggest that P- and S-waves anisotropies are a possible discriminating factor between the two lithologies in the suboceanic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号