首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5489篇
  免费   539篇
  国内免费   770篇
测绘学   52篇
大气科学   651篇
地球物理   2207篇
地质学   1355篇
海洋学   1175篇
天文学   526篇
综合类   130篇
自然地理   702篇
  2024年   27篇
  2023年   85篇
  2022年   133篇
  2021年   146篇
  2020年   200篇
  2019年   215篇
  2018年   178篇
  2017年   177篇
  2016年   188篇
  2015年   181篇
  2014年   257篇
  2013年   321篇
  2012年   189篇
  2011年   290篇
  2010年   232篇
  2009年   415篇
  2008年   421篇
  2007年   423篇
  2006年   316篇
  2005年   269篇
  2004年   278篇
  2003年   255篇
  2002年   197篇
  2001年   186篇
  2000年   169篇
  1999年   191篇
  1998年   115篇
  1997年   121篇
  1996年   84篇
  1995年   67篇
  1994年   89篇
  1993年   64篇
  1992年   60篇
  1991年   35篇
  1990年   42篇
  1989年   36篇
  1988年   23篇
  1987年   14篇
  1986年   22篇
  1985年   24篇
  1984年   15篇
  1983年   16篇
  1982年   9篇
  1981年   8篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
  1954年   1篇
排序方式: 共有6798条查询结果,搜索用时 0 毫秒
71.
根据历史资料、数据和相关研究,结合研究区域背景,分析苏北废黄河三角洲的演变。结果显示,岸线演变在发育阶段和侵蚀阶段分别为向海延伸约90 km和侵蚀后退约22 km,面积相差约800 km2,三角洲地貌演变表现为岸线平直-曲折-平滑-平直的过程。在废三角洲陆海相互作用的基础上,运用演化模式分析三角洲的演变过程。该三角洲演变可以分为7个演变阶段,发育期在径流和潮流作用下以沙洲并陆淤积延伸方式进行,侵蚀期在波浪和潮流作用下以沙洲合并侵蚀后退和淤积外长交替侵蚀的方式。泥沙输运、人类活动和气候变化对废三角洲的演变有重要影响,巨量的来沙是三角洲发育的原因,泥沙平衡被打破是侵蚀的主要原因。发育期中,泥沙输运影响淤积速度和位置,人类活动和气候变化影响黄河河道迁移、输沙量和产沙量;侵蚀期中,泥沙输运影响侵蚀状态,人类活动在一定程度上影响海岸带冲/淤,气候变化将影响三角洲的演变趋势。  相似文献   
72.
There exists a tongueshaped swelldominance pool known as Swell Pool (SP) in the Eastern Pacific region. The monthlymean wave transports (WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data. By comparing the 2000 monthlymean WT and monthlymean wind field from QUICKSCAT, large differences are found between the wave transport direction and the wind direction over the Eastern Pacific. This may serve as an evidence for the existence of the SP in this region. The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific (TEP) are in the westerly regions of the Southern and Northern Pacific.  相似文献   
73.
We conducted hydrographic observations ten times in the Tsushima Strait to reveal seasonal variations of horizontal material transports such as of heat, freshwater, chlorophyll a, and dissolved inorganic nitrogen (DIN) and phosphorus (DIP) through the eastern channel of the Tsushima Strait (ECTS). The volume, freshwater, and heat transport results are of nearly the same order as results reported in previous studies. The annual mean DIN and DIP transports of 3.59 kmol/s and 0.29 kmol/s are large relative to those of the Changjiang and the Taiwan Strait and are horizontally transported through the ECTS. Nutrient transports are high in July–August and October and low in April and November. Increased nutrient transports in July–August and October are due to the appearance of a cold saline water mass in the bottom layer of the ECTS. Changes in DIN transports in summer and autumn, which account for two-thirds of the total annual DIN transport, would have a large effect on the nitrogen budget and biological productivity in the Tsushima Warm Current region.  相似文献   
74.
Prediction of threshold conditions and incipient motion is the essential issue for the study of sediment transport. This work compares existing empirical threshold curves proposed for Shields diagram, a method based on the concept of probability of sediment movement, and an empirical method based on movability number. These methods are used to predict the incipient motion conditions for experimental runs taken from various studies. Most of the experimental data, used in this work, have not been used before in derivation of alternative formulations for Shields diagram and other methods. The empirical threshold curves based on the Shields entrainment function was the least successful at predicting the measured incipient motion conditions, while the use of the movability number gives good predictions of critical shear velocity compared with experimental data.  相似文献   
75.
The early diagenesis of trace elements (V, Cr, Co, Cu, Zn, As, Cd, Ba, U) in anoxic sediments of the Achterwasser, a shallow lagoon in the non-tidal Oder estuary in the Baltic Sea, was investigated in the context of pyrite formation. The dissolved major redox parameters show a two-tier distribution with transient signals in the occasionally re-suspended fluid mud layer (FM) and a permanently established diagenetic sequence in the sediment below. Intense microbial respiration leads to rapid depletion of O2 within the uppermost mm of the FM. The reduction zones of Mn, Fe and sulfate overlap in the FM and in the permanently anoxic sediment section which appears to be a typical feature of estuarine sediments, under low-sulfate conditions. Degrees of pyritization (DOP) range from 50% in the FM to remarkably high values > 90% at 50 cm depth. Pyrite formation at the sediment surface is attributed to the reaction of Fe-monosulfides with intermediate sulfur species via the polysulfide pathway. By contrast, intense pyritization in the permanently anoxic sediment below is attributed to mineral growth via adsorption of aqueous Fe-sulfide complexes onto pyrite crystals which had originally formed in the surface layer.The studied trace elements show differential behavior patterns which are closely coupled to the diagenetic processes described above: (i) Zn, Cu and Cd are liberated from organic matter in the thin oxic layer of the sediment and diffuse both upwards across the sediment/water boundary and downwards to be trapped as monosulfides, (ii) V, Cr, Co and As are released during reductive dissolution of Mn- and Fe-oxyhydroxides, (iii) U removal from pore water occurs concomitantly to Fe reduction in the FM and is attributed to reduction of U(VI) to U(IV), (iv) the Ba distribution is controlled by reductive dissolution of authigenic barite in the sulfate reduction zone coupled with upward diffusion and re-precipitation. The incorporation of trace elements into pyrite is most intense for Co, Mn and As, intermediate for Cu and Cr and little to negligible for U, Zn, Cd, V and Ba. The observed trend is largely in agreement with previous studies and may be explained with differing rates for ligand exchange. Slow and fast ligand exchange and thus precipitation kinetics are also displayed by downcore increasing (Mn, Cr, Co and As) or constantly low (Zn, Cu, Cd) pore water concentrations. The downward increasing degrees of trace metal pyritization (DTMP) for Co, Cu, Zn and As are, in analogy to pyrite growth, assigned to adsorption of sulfide complexes or As oxyanions onto preexisting pyrite minerals.  相似文献   
76.
本文主要介绍了三种系列采泥器在加工生产过程中的工艺设计及工艺保障。  相似文献   
77.
The late Pleistocene–Holocene stratigraphic architecture on the steep and narrow shelf off Nha Trang, central Vietnam has been explored by high resolution seismic profiles integrated with sediment core data. Sequence stratigraphic results reveal five major seismic units and three bounding surfaces which are composed of two distinctive sequences. Those sequences are bounded by two regional unconformities (SB1, SB2) which have been formed in respond to different sea-level regimes. The revealed relict beach–ridge deposits at water depth of about ∼130 m below the present water depth indicate that the Last Glacial Lowstand (LGM) sea-level in this area was lower than in neighboring areas and it probably resulted from subsidence due to high sedimentation rate and/or neotectonic movements of the East Vietnam Fault System. The late Pleistocene high amplitude of sea-level change during a long fourth-order and superimposed by shorter fifth-order cycle is the principal factor in reorganizing the formation of the Nha Trang continental shelf sequence. Other local controlling factors as fluctuations in sediment supply, morphological variations of the LGM surface, subsidence rate and hydrodynamic conditions provided the distinctive features of the Nha Trang shelf sequence stratigraphic model in comparison with neighboring other areas.  相似文献   
78.
79.
80.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号