首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   54篇
  国内免费   100篇
测绘学   4篇
大气科学   6篇
地球物理   1036篇
地质学   324篇
海洋学   330篇
天文学   2篇
综合类   21篇
自然地理   224篇
  2024年   1篇
  2023年   24篇
  2022年   34篇
  2021年   24篇
  2020年   35篇
  2019年   35篇
  2018年   39篇
  2017年   38篇
  2016年   47篇
  2015年   25篇
  2014年   90篇
  2013年   63篇
  2012年   35篇
  2011年   117篇
  2010年   75篇
  2009年   137篇
  2008年   144篇
  2007年   137篇
  2006年   87篇
  2005年   73篇
  2004年   68篇
  2003年   83篇
  2002年   58篇
  2001年   51篇
  2000年   44篇
  1999年   62篇
  1998年   32篇
  1997年   36篇
  1996年   23篇
  1995年   25篇
  1994年   33篇
  1993年   26篇
  1992年   33篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
531.
The lower Yellow River channel was maintained by artificial levees between 1580 and 1849. During this period, 280 levee breaches occurred. To estimate sediment storage on the floodplains outside the levees, a regression model with a decadal time step was developed to calculate the outflow ratio for the years when levee breaching occurred. Uncertainty analysis was used to identify the likely outflow ratio. Key variables of the model include annual water discharge, a proxy for levee conditions, and potential bankfull discharge of the channel before flood season. Uncertainty analysis reveals an outflow ratio of 0.35–0.56. We estimate that during this period, 18.8–30.1% of the total ~312 Gt of sediment load was deposited on the floodplains outside the levees. Human-accelerated erosion in the Loess Plateau caused a 4-fold increase in sediment delivery to the lower Yellow River, which could not be accommodated by channel morphodynamic changes. As a result, 21.2–27.5% of the total sediment load was deposited within the levees, creating a super-elevated channel bed that facilitated an uncommonly high breach outflow ratio. Hence, the factor of a large super-elevation relative to the mean main channel depth should be considered when designing diversions to restore floodplains. © 2018 John Wiley & Sons, Ltd.  相似文献   
532.
长江中下游湖泊沉积物氮磷形态与释放风险关系   总被引:14,自引:2,他引:12  
运用聚类分析、主成分分析和相关矩阵的统计分析手段,对长江中下游湖群共18个湖泊的沉积物氮磷释放风险以及湖泊沉积物、间隙水和上覆水中氮磷形态以及其他相关地球化学参数进行分析。草型和藻型湖泊的环境差异是造成氮磷释放风险的主要原因。氮磷释放风险与铁磷、藻类可利用磷、总氮、总磷、上覆水氮磷含量、间隙水氮含量、孔隙度和有机质含量间的关系最为密切。决定磷酸盐释放风险的主要形态磷是藻类可利用磷和铁磷,其他形态磷或者含量较低或者不易被转化释放,对磷酸盐释放风险影响较小。有机磷含量对磷的释放风险没有直接决定作用,但它与有机质含量间呈显著正相关。  相似文献   
533.
Age determination of paleotsunami sediment from Lombok Island, Indonesia, and surrounding area has been carried out using the 210 Pb method in BATAN Jakarta. The basic theory of this method assumes that weathering of sediments, including paleotsunami sediments, will result in 210 Pb enrichment. The principle of this method is to calculate 210 Pb contents accumulation in a particular sedimentation interval from the surface to the deeper buried sediments. The results are then converted into age or depositional time in years ago unit. The dating results from the paleotsunami sediments of the Gawah Pudak(S8°46’2.91’’, E115°56’34.23’’) and Gili Trawangan areas(S8°21’1.38’’, E116°2’36.6’’) indicate the Gawah Pudak sediments were deposited 37 years ago(c. in 1977)and 22 years ago(c. in 1992). Three paleotsunami sediments from Gili Trawangan were deposited 149 years ago(c. in 1865), 117 years ago(c. in 1897) and 42 years ago(c. in 1972). These results are then compared to the available Indonesian earthquake catalogue data. This study reveals that paleotsunami sediments around Lombok Islands, from older to younger, were caused by the 1857 earthquake(epicentre in Bali Sea; M7; S8°00’09.45’’,E115°29’56.41’’), 1897 earthquake(epicentre in Flores Sea;M5.5; S6°47’59.62’’, E120°48’03.5’’ or Sulu Sea earthquake; M8.5; 70 km NW of Basilan Island), the 1975 earthquake(Nusa Tenggara; S10°6’16.61’’, E123°48’09.39’’), 1977 earthquake(in Waingapu, Sumba; M8.0;S11°5’39.34’’, E118°27’50.86’’) and the 1992 earthquake(Flores; M7.8; S8°28’52.11’’, E121°53’44.3’’).  相似文献   
534.
利用地震海洋学方法在南海北部陆架和上陆坡区域发现了15个雾状层.这些雾状层的延伸长度从几千米到几十千米,厚度十几米到一百米,其顶界所处水深在135 m至715.5 m范围之间.雾状层在地震海洋学剖面上表现为强反射特征.不同于其他传统声学或光学方法,地震海洋学方法分辨率高,且能在短时间内对整个水体进行成像,可以记录到雾状层的时空变化特征,实现对雾状层的"四维"观测.南海北部上陆坡区域是内孤立波浅化、能量耗散集中的区域,在此过程中内孤立波会导致较大的波致流速,侵蚀海底使得表面沉积物再悬浮,进入水体,形成和维持雾状层的存在.  相似文献   
535.
Existing numerical investigations of dam-break flows rarely consider the effects of vegetation.This paper presents a depth-averaged two-dimensional model for dam-break flows over mobile and vegetated beds.In the model,both the consequences of reducing space for storing mass and momentum by the existence of vegetation and dragging the flow are considered:the former is considered by introducing a factor (1-c) to the flow depth,where c is the vegetation density;the later is considered by including an additional sink term in the momentum equations.The new governing equations are discretized by the finite volume method;and an existing second-order central-upwind scheme embedded with the hydrostatic reconstruction method for water depth,is used to estimate the fluxes;the source terms are estimated by either explicit or semi-explicit methods fulfilling the stability requirement.Laboratory experiments of dam-break flows or quasi-steady flows with/without vegetation effects/sediment transport are simulated.The good agreements between the measurements and the numerical simulations demonstrate a satisfactory performance of the model in reproducing the flow depth,velocity and bed deformation depth.Numerical case studies of six scenarios of dam-break flows over a mobile and vegetated bed are conducted.It is shown that when the area of the vegetation zone,the vegetation density,and the pattern of the vegetation distribution are varied,the resulted bed morphological change differs greatly,suggesting a great influence of vegetation on the dam-break flow evolution.Specifically,the vegetation may divert the direction of the main flow,hindering the flow and thus result in increased deposition upstream of the vegetation.  相似文献   
536.
A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three para-meters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that all the examined models perform adequately for the fine sediment data, where the sediment particles have more uniform gra-dation and relative roughness is not a factor. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulation. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.  相似文献   
537.
Due to the impacts of globe climate change and human activities, dramatic variations in runoff and sediment load were observed for the Yellow River. Analyses of nearly 65 years' data measured at main hydrologic-stations on the Yellow River from 1950 to 2014 indicated that, except for the Tangnaihai station in the head region, sharp downward trends existed in both the annual runoff and annual sedi-ment load according to the Mann–Kendal trend test;and their abrupt changes occurred in 1986 and in 1980, respectively, according to the rank sum test. Factors affecting the changes in the runoff and sediment load were very complicated. Results indicated that the reducing precipitation and the increasing water consumption were the main causes for the runoff decline, while the impoundment of the Longyangxia Reservoir and its combined operation with the Liujiaxia Reservoir exerted a direct bearing on the abrupt change in the annual runoff. In addition to the sediment load decrease associated with the runoff reduction, the reduced storm intensity, the conducted soil erosion control, and the constructed dam buildings all played an important role in the trends and abrupt changes of sediment load decline.  相似文献   
538.
The paper presents a 0-D model of an alluvial watercourse schematized in two connected reaches, evolving at the long time-scale and under the hypothesis of Local Uniform Flow. Each reach is defined by its geometry (constant length and width, time-changing slope) and grain-size composition of the bed, while the sediment transport is computed using a sediment rating curve. The slope evolution is provided by a 0-D mass balance and the evolution of the bed composition is computed by a 0-D Hirano equation. A system of differential equations, solved with a predictor-corrector scheme, is derived and applied to the schematic watercourse to simulate the morphological response to changing initial conditions, and the evolution towards long-term equilibrium conditions. Differently from a single-reach 0-D schematization with uniform grain-size, besides the simplifications adopted, the model proposed here simulates the behaviour of alluvial rivers in a physically-based way, showing a grain-size fining in the downstream direction accompanied by milder slopes, and a tendency to develop concave longitudinal profiles.  相似文献   
539.
Determination of sediment stability in the field is challenging because bed shear stress (BSS), a determining factor of sediment erosion, can’t easily be directly measured. To tackle this challenge and reliably assess sediment erodibility in a fast flowing river, a standalone underwater camera system and a new insitu flume (ISF) were developed and applied in this study. The camera system was used to record sediment movement and the new ISF was used for measuring critical bottom shear stress (CBSS). The camera can be deployed alone in water to record videos or take pictures with light emitting diode (LED) lighting and flexible schedule settings. The ISF is based on the concept that the amount of force needed to erode the same particle under different flow conditions should be similar. Two high resolution Acoustic Doppler Current Profilers (ADCP) also were deployed in the field to collect velocity-depth profiles which are used by conventional methods to calculate BSS with the law of the wall. The sediment erodibility was then assessed based on the comparison between the obtained CBSS and BSS and then further verified with the recorded observations from the deployed camera. The results reveal that the widely used conventional method can produce large uncertainties and is not adequate to provide meaningful conclusion under these conditions.  相似文献   
540.
Sediment deposition in reservoirs is an important research topic in engineering practice. Reservoir sedimentation has the potential to affect ood levels, drainage for agricultural land, pump station and hydropower operation as well as navigation. This paper describes the development of a coupled fully three-dimensional (3D) numerical model for the prediction of the local sediment ushing scour upstream of the bottom outlet. The presented numerical model solves the Navier-Stokes equations in conjunction with the k- turbulence model which includes both sediment transport and hydrodynamic parameters. The proposed coupled fully 3D numerical model is used to simulate experimental tests based on non-cohesive sediment. The geometric features of the scour hole (temporal and spatial hole devel- opment) upstream of the bottom outlet were reasonably well predicted compared to the experimental data. Furthermore, the velocity eld upstream of the bottom outlet was in good agreement with mea- surements. The proposed numerical model for bottom outlet ushing was, therefore, validated because of its ability to accurately predict the scour hole development during the ushing process. The proposed numerical model can be considered reliable provided that the model is correctly calibrated and set up to re ect the conditions of a particular case study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号