首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   82篇
  国内免费   278篇
测绘学   18篇
大气科学   38篇
地球物理   175篇
地质学   771篇
海洋学   68篇
综合类   13篇
自然地理   123篇
  2024年   14篇
  2023年   10篇
  2022年   17篇
  2021年   20篇
  2020年   33篇
  2019年   43篇
  2018年   31篇
  2017年   40篇
  2016年   49篇
  2015年   38篇
  2014年   51篇
  2013年   48篇
  2012年   41篇
  2011年   65篇
  2010年   52篇
  2009年   78篇
  2008年   75篇
  2007年   84篇
  2006年   44篇
  2005年   48篇
  2004年   44篇
  2003年   37篇
  2002年   32篇
  2001年   23篇
  2000年   22篇
  1999年   25篇
  1998年   24篇
  1997年   24篇
  1996年   24篇
  1995年   13篇
  1994年   14篇
  1993年   15篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有1206条查询结果,搜索用时 93 毫秒
21.
Samples of dune sands, surveys of the morphology and field measurements of wind velocity and direction of a simple linear dune in Taklimakan Sand Sea show that the airflow and sand flux vary with the change of wind direction on the dune surface. Decrease of the airflow stress on the lee flank does not result in much decrease of the sand flux because of the low threshold shear velocities and the airflow conditions. There are no significant relations between the sand flux on the lee flank and the angle of incidence of the airflow. The low threshold shear velocities and the maintenance of the sand flux at the lee flank are the main mechanisms keeping the linear shape of the dunes. Measurements of the sand flux shows that it reaches a maximum on the crest of the dune. The grain size of the transported sands has some differences compared to that of the dune surface. The sands transported are finer than that on the dune surface, but better sorted under the influence of the medium to low wind activity. The field experiment results exhibit that it is possible for the dunes to be shaped as linear dunes during the processes of accumulation and elongation.  相似文献   
22.
Wind velocity and sand transport on a barchan dune   总被引:2,自引:0,他引:2  
We present measurements of wind velocity and sand flux performed on the windward side of a large barchan dune in Jericoacoara, northeastern Brazil. From the measured profile, we calculate the air shear stress using an analytical approximation and treat the problem of flow separation by an heuristic model. We find that the results from this approach agree well with our field data. Moreover, using the calculated shear velocity, we predict the sand flux according to well-known equilibrium relations and with a phenomenological continuum saltation model that includes saturation transients and thus allows for nonequilibrium conditions. Based on the field data and theoretical predicted results, we indicate the principal differences between saturated and nonsaturated sand flux models. Finally, we show that the measured dune moves with invariant shape and predict its velocity from our data and calculations.  相似文献   
23.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   
24.
Mine development along a 15-mile (24 km) section of the Warfield Fault in Mingo County, West Virginia has broadened the geological understanding of the fault and its related structures. The fault has been exposed in two new road cuts, one in the northeast-trending segment at Neely Branch and one in the eastern east-trending segment at the head of Marrowbone Creek. Both exposures show a well-defined normal fault with a 45° to 55° N dip, juxtaposing sandstone/shale packages from the roof and the floor of the Coalburg seam. The fault is associated with a thin gouge zone, some drag folding, and parallel jointing. Its trace tends to run parallel to the crest of the adjacent Warfield Anticline. Based on underground mine development and detailed core drilling, the vertical offset along the fault plane ranges from a maximum of 240 ft (73 m) in the central part of the area near the structural bend to less than 100 ft (30 m) in western and eastern directions. The fault is located along the relatively steeply dipping (locally in excess of 25%) southern limb of the Warfield Anticline, and appears related to a late phase of extension involving folded Pennsylvanian strata. On a regional scale, the lithological variations across the fault do not suggest any appreciable strike-slip component.Underground room and pillar mines in the Coalburg seam north and south of the fault have been greatly impacted by the Warfield structures. Due to the combined (and opposite) effects of the folding and faulting, the northern mines are located up to 400 ft (125 m) higher in elevation than the southern ones. Overland conveyor belts connect mining blocks separated by the fault. The practical mining limit along the steep slopes toward the fault is around 15%. Subsidiary normal faults with offsets in the 5- to 15-ft (1.5–4.5 m) range are fairly common and form major roof control and production hurdles. Overall, the Warfield structures pose an extra challenge to mine development in this part of the Appalachian Coalfields.  相似文献   
25.
含裂隙煤层底板突水规律的数值模拟与工程应用   总被引:5,自引:0,他引:5  
本文结合淮北杨庄矿某工作面实际工程情况, 利用NCAP-2D-W对煤层底板突水进行多方案的数值模拟试验研究。主要内容包括:(1) 考虑在承压水不变的条件下,设计不同裂隙分布状态,探讨单裂隙、多裂隙、不同长度裂隙对煤层底板破坏的影响及开采矿压对裂隙顶部破坏的影响;(2) 考虑承压水的变化,分别考虑单裂隙和多裂隙两种分布状态,探讨裂隙对煤层底板破坏的影响及开采矿压对裂隙底部破坏的影响。通过分析受采动荷载、岩层结构变化、煤层底板中裂隙分布状态及承压水变化等因素影响的数值试验,获得了随开采工作面不断推进煤层底板破坏区的发展、突水导升高度的递增、突水通道的形成等相关规律。  相似文献   
26.
中国西北部“4.5”沙尘暴过程中尺度低压的数值模拟   总被引:3,自引:9,他引:3  
利用改进型PSU/NCAR中尺度数值模式(MM4标准版),取模式水平格距40km,46×61网格,垂直方向a取15层,即从地面到模式顶(100hPa),σ=0.0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.78、0.84、0.89、0.93、0.96、0.98、0.99、1.00,采用NCAR的30'×30'地形资料,以常规观测资料作为初始场,较好地模拟了此次沙尘暴过程的海平面气压的演变和分布,特别是张掖、柴达本盆地以及敦煌附近的三个中低压。同时,模拟了张掖中低压与蒙古冷高压之间的甘肃河西沙尘暴东大风。敏感性试验表明,沙尘暴中低压的形成发展主要是受于物理过程制约;沙尘暴中尺度系统的研究与暴雨中尺度系统的研究是有区别的,积云对流参数化并不是特别重要,在设计研究沙尘暴的数值模式中,应当合理地处理其他的热力、动力过程及大气外强迫源的作用。模式水平格距、地形真实程度对模拟中低压的位置、中心强度有重要贡献;下垫面变化中低压强度有一定影响。张掖热低压的形成发展主要是在有利的环境形势下,特殊地势起了重要作用,表现为直接动力强迫和间接热力强迫。  相似文献   
27.
直罗油田主力产层为三叠系延长组长2油层组,储层以三角洲分支河道砂体为主,岩性主要为长石细砂岩,大量的自生矿物对原生孔隙产生了很大程度的破坏。较强的成岩后生作用使得储层以粒间溶孔及原生粒间余孔为主要储集空间。储层孔隙结构表现为以小孔隙、小喉道为主要特征,非均质性较强。物性分布主要与其在砂体中的分布部位有关。  相似文献   
28.
梁绍暹  任大伟 《地质科学》1997,32(4):478-486
华北石炭——二叠纪煤系太原组和山西组不同煤层粘土岩夹矸中,广泛含有一水软铝石、一水硬铝石和三水铝石。大多数一水铝石矿物呈薄纹层状、似层状及层状聚集于富岩质及富有有机质粘土岩夹矸条带中,有的呈细脉状沿炭质条带及粘土岩夹矸层理的节理裂隙分布,并与玉髓、方解石、高岭石或迪开石和铵云母细脉共生。铝的氢氧化物矿物可以作为成岩古温度和成岩阶段划分的标志矿物。最后还讨论了该矿物的成因。  相似文献   
29.
抚顺盆地超厚煤层的沉积条件分析   总被引:11,自引:0,他引:11  
根据抚顺盆地早第三纪超厚煤层中异常丰富的成因标志,论证了一种与河流、风暴作用有关的陆相超厚煤层形成新机制-湖成异地-微异地混合堆积机制。在这一新机制中,由风暴上升流(也许还有地震)触发的水下重力流及风暴回流,既驱动湖滨泥炭沼泽和三角洲上的有机碎屑及无机碎屑进入湖泊中心区,又造成泥炭碎屑在较深水环境的再次堆积,从而使其中无机碎屑与泥炭碎屑有效地分离。  相似文献   
30.
介绍了古交矿区8号煤在不加催化剂和加催化剂两种条件下的实验室热解脱硫试验情况.结果表明,在不加催化剂时,升温速度为5~10℃/min脱硫效果最好,脱硫率大于40%;当在原煤中添加催化剂AlCl3和NH4Cl时,有较好的脱硫作用,焦炭中灰分也没有明显提高,而当添加催化剂CuCl2和CaO时,不能脱除煤中硫。并据此提出了建议脱硫方案。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号