首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
大气科学   14篇
地球物理   6篇
天文学   1篇
自然地理   7篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
11.
Saltation of sediment particles is an important pattern of bedload transport.Based on force analysis for sediment particles,a Lagrangian model was proposed for the saltating motion of bedload in river flows,which was then solved with numerical method.Simulation results on the saltating trajectories neglecting particle rotation and turbulence effects compare fairly well with experimental observations.The mean values of the saltation parameters (saltation height,length and velocity) also agree well with the previous experimental data.Based on the numerical results,regression equations for the dimensionless saltation height,length and velocity were presented.Using the numerically achieved characteristics of the sediment saltation,we also obtained mathematical expression for the sediment transport rate.The studies in this paper are significant for its contribution to mechanism of the bedload motion and the computation of sediment transport rate.  相似文献   
12.
Heterogeneous Saltation: Theory, Observation and Comparison   总被引:7,自引:0,他引:7  
In the theory of saltation, under development since the 1940s, it is often assumed that saltation is homogeneous, i.e., saltating particles are uniform in size and follow identical trajectories. This assumption is a limitation to the development of saltation theory. In this paper, as in some other studies made since the 1980s, we are concerned with the saltation of multi-sized particles in turbulent flows, a process that we refer to as heterogeneous saltation. The theory deals with several questions, including the variation of particle size distribution with height, the entrainment rates of particles in different size ranges, and the associated profiles of saltation flux, particle momentum flux and particle concentration. It is hypothesised that saltation is dynamically similar and ‘universal’ similarity functions can be established. The similarity function for saltation flux is presented. Field observations are carried out at the southern fringe of the Takla Makan Desert in April 2002. Measurements of streamwise saltation flux of 32 particle size groups are made using a sand particle counter, together with measurements of wind speed and other atmospheric variables. These data are used to validate the saltation theory, by examining whether the observed saltation flux and particle size distribution can be reproduced. It is shown that the theory is promising in predicting these quantities.  相似文献   
13.
14.
Two Doppler radars and a suite of auxiliary surface observations are used to document the electrical, aerosol and aerodynamic properties of dust-lofting gust fronts near Niamey, Niger during the AMMA (African Monsoon Multidisciplinary Analysis). Electrification with dominant negative polarity is a common behavior, consistent with earlier studies on dust devils and the Harmattan wind in dry environments.  相似文献   
15.
An examination is given of the way in which the saltation layer isaffected by the characteristics of the particles. Special attentionis given to the potential importance of aerodynamic entrainmentduring steady state saltation, a topic for which the discussion is still unresolved. A new numerical model for saltation in steady stateis presented, which is focused on the computation of the horizontalmass flux. The numerical computations, combined with physical arguments, suggest that aerodynamic entrainment plays a more important role thangenerally assumed so far. A comparison of the model results is made with previous models, and with measurements of snow saltation that have been reported in the literature.  相似文献   
16.
The measurement of aeolian sand transport rates on small scales is of interest to the development and testing of detailed models of sand movement by wind. This paper reports on laboratory evaluations and preliminary field tests of a new design of a piëzo-electric impact responder, called a ‘Safire’, capable of measuring saltation impacts at a frequency of 20 Hz. The advantages of the Safire are: (1) that it provides high-frequency measurements, (2) that it presents a minimal obstruction to the wind flow (no scour observed in the field), and (3) that it is of a (relatively) low-cost.Laboratory calibrations were performed with a vertical gravity flume generating known sand grain fluxes using both mixed sand and specific size fractions. Initial tests investigated three fundamental characteristics: correspondence between digital and analogue signals generated by the instrument, directional response of the probe, and linearity of instrument response to mass flux.Instrument calibration included determination of the momentum threshold required for the sensor to register a grain impact. Based on this lower limit and the known distribution of grain size and speed at different fall heights, a prediction is made as to the sand grain flux the Safire ought to measure, which is then compared with the signal response. The result of this comparison is an assessment of the instrument's efficiency in counting saltating grains. These Safires were also deployed in the field as part of a larger investigation of spatio-temporal transport variability. This experiment provided the opportunity to compare the instrument's performance with traditional sand traps, and this paper develops methods and assumptions required to convert measurements from impact responders to traditional mass transport rates.The evaluations indicate that improvements to the instrument production process are required to ensure a standard momentum threshold among individual instruments. Furthermore, the sensor design needs to be reconsidered in order to eliminate the variation in response depending on azimuth direction, so that the sensor is uniformly omni-directional.  相似文献   
17.
The physics of the two processes (saltation and sandblasting) leading to fine mineral dust emissions by wind erosion in arid or semi-arid areas has been detailed and modeled. The combination of these two models has led to a physically explicit Dust Production Model (DPM). In this work, sensitivity tests are performed with the DPM to determine the nature of the main soil parameters that control dust emissions by sandblasting. It is found that the soil roughness length and the dry size distribution of the soil aggregates constituting the loose wind erodible fraction of the topsoil have the greatest influence on the soil potential for mineral dust production. Contrary to what is often assumed, soil texture is not a relevant parameter.In the light of these new findings, results of vertical flux measurements performed over a wide variety of sources in Niger and the US south west (14 soils) have been reanalyzed. Results show (1) that for the tested soils the DPM, and hence sandblasting, explain all dust emissions, and (2) that 13 of the 14 soils that had been selected a priori for their high potential for dust emissions contained a fine soil-aggregate component. This is consistent with the sensitivity tests indicating that the presence of such a component could enhance dust emissions by one order of magnitude. Finally, it can be concluded that most of the apparent scatter in the experimental results was in large part due to an inappropriate choice of soil parameters to interpret them.  相似文献   
18.
Wind-tunnel experiments of drifting snow were carried out andsplash functions were formulated to describe probability distributions of vertical restitution coefficient, horizontal restitution coefficient and ejection number when a natural snow particle collided at a natural snow surface. The following results were obtained:(1) The vertical restitution coefficient was usually larger than unity and decreased sharply with impact angle. At smaller impact angles around 5 degrees the vertical restitution coefficient exceeded a magnitude of ten.(2) The horizontal restitution coefficient, ranging from -1 to 1.5, decreased with impact velocity, but was not clearly dependent on impact angle.(3) The ejection number amounted to five per impact and increasedwith impact velocity.(4) Three splash functions to express the probability distributions of the vertical restitution coefficient, horizontal restitution coefficient and ejection number were formulated, which will be used in future computer simulations of the snow drifting process.  相似文献   
19.
Wind forces and related saltation transport   总被引:7,自引:1,他引:7  
The effect of several wind characteristics on sand transport was studied in three experiments in north Burkina Faso, West Africa. The first experiment is used to analyse the relation between wind speed and shear stress fluctuations across height. The second experiment is used to study the relation of these wind characteristics with saltation transport for fourteen convective storms, registered during the rainy seasons of 2002 and 2003. The effect of sampling time is studied for two of these convective storms. The third experiment relates the turbulent structures of four convective storms to saltation transport. Wind speed measurements were undertaken with two sonic anemometers and sediment transport was measured by two saltiphones. The sampling frequency was either 8 or 16 Hz. The sonic frame of reference was rotated according to a triple rotation.Horizontal fluctuations showed a (fairly) good correlation with height because the wind speed at both sensors was affected by the same vortices. The correlation coefficients ranged from 0.42 (when the distance between the sensors was 1.75 m) to 0.92 (when the distance was 0.25 m). The instantaneous Reynolds' stress had the weakest correlation (correlation coefficient of 0.05 at 1.75 m between the sensors and 0.56 at 0.25 m between the sensors), because the momentum at 2 m above the soil surface is transported by different eddies than those close to the ground. This also explains the fairly good correlation coefficients between the horizontal components of the wind and saltation compared to the poor correlations between instantaneous Reynolds' stress and saltation. An increase in sampling time did not have much impact on these correlation coefficients up to sampling periods of about 30 s. However, this sampling interval would be too coarse to describe the vertical wind component adequately. The classification of the moments of shear stress into the turbulent structures, sweeps, ejections, inward and outward interactions, showed that the mean saltation flux is higher at sweeps and outward interactions than at ejections and inward interactions. Also, saltation occurred more often during sweeps and outward interactions than during ejections and inward interactions.  相似文献   
20.
A Similarity Theory for Saltation and Application to Aeolian Mass Flux   总被引:7,自引:0,他引:7  
A similarity theory for saltation is presented. To derive the theory, a saltation model is developed and applied to simulating particle motion in turbulent flows. The numerical results are then fitted to simple universal expressions, or similarity functions. This approach allows the determination of saltation mass flux and other quantities. While the theory can be general, we focus on studying the saltation mass flux profile q(z). It is shown that q(z) is determined by friction velocity, aerodynamic roughness length and soil particle size distribution. There are two limiting situations, i.e., the saltation of large particles in weak turbulence and that of small particles in strong turbulence, for these two cases, q(z) is respectively exponential and Gaussian. Modified saltation has an intermediate saltation mass flux profile. For multi-sized particles, q(z) is a weighted superposition of many different profiles. The theory is compared with wind-tunnel observations, and uncertainties of the theory are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号