首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   5篇
  国内免费   2篇
测绘学   4篇
大气科学   2篇
地球物理   15篇
地质学   2篇
  2024年   1篇
  2022年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
12.
Accuracy of the Copernicus snow water equivalent (SWE) product and the impact of SWE calibration and assimilation on modelled SWE and streamflow was evaluated. Daily snowpack measurements were made at 12 locations from 2016 to 2019 across a 4104 km2 mixed-forest basin in the Great Lakes region of central Ontario, Canada. Sub-basin daily SWE calculated from these sites, observed discharge, and lake levels were used to calibrate a hydrologic model developed using the Raven modelling framework. Copernicus SWE was bias corrected during the melt period using mean bias subtraction and was compared to daily basin average SWE calculated from the measured data. Bias corrected Copernicus SWE was assimilated into the models using a range of parameters and the parameterizations from the model calibration. The bias corrected Copernicus product agreed well with measured data and provided a good estimate of mean basin SWE demonstrating that the product shows promise for hydrology applications within the study region. Calibration to spatially distributed SWE substantially improved the basin scale SWE estimate while only slightly degrading the flow simulation demonstrating the value of including SWE in a multi-objective calibration formulation. The particle filter experiments yielded the best SWE estimation but moderately degraded the flow simulation. The particle filter experiments constrained by the calibrated snow parameters produced similar results to the experiments using the upper and lower bounds indicating that, in this study, model calibration prior to assimilation was not valuable. The calibrated models exhibited varying levels of skill in estimating SWE but demonstrated similar streamflow performance. This indicates that basin outlet streamflow can be accurately estimated using a model with a poor representation of distributed SWE. This may be sufficient for applications where estimating flow is the primary water management objective. However, in applications where understanding the physical processes of snow accumulation, melt and streamflow generation are important, such as assessing the impact of climate change on water resources, accurate representations of SWE are required and can be improved via multi-objective calibration or data assimilation, as demonstrated in this study.  相似文献   
13.
无线传感器通常用于环境监测,如气候变化、水质和监控灾害管理等。目前,灾害管理是一项十分关键和紧迫的工作,在海啸预警和预测系统方面尤为突出。本文在研制区域水文态势地理信息服务系统(RHSGISS)的基础上,为减缓灾害,研究出了海啸早期预警系统的一种本体式表达。该系统由地震监测台站、海底压力记录仪(BPR)和验潮仪等组成,其主要功用是解释复杂的多维数据。该数据由各种传感器、系统间的互操作性以及处理异构数据等生成。目前的核心问题在于将获取自海啸早期预警系统多个组件的异构数据进行融合以及提供基于Web网络的数据服务。面向特定陆表监测与应急响应任务,本文通过使用开放地理空间联盟(OGC)确定的传感器网络赋能实现(SWE)框架,构建了基于"北斗"卫星导航系统的GPNT服务体系,能为所有接入空天地一体化对地感测网环境下的用户共享互操作性和可伸缩性提供便利。本体因其功能上可以提供明确含义的信息,而成为了解决信息异质性问题的手段。本文在传感器网络数据与数据语义方面提出了一种面向服务的架构(SOA)模型,目的是要提供使用本体和Jena规范来表示更有意义的早期海啸预警系统信息。  相似文献   
14.
This study investigates scaling issues by evaluating snow processes and quantifying bias in snowpack properties across scale in a northern Great Lakes–St. Lawrence forest. Snow depth and density were measured along transects stratified by land cover over the 2015/2016 and 2016/2017 winters. Daily snow depth was measured using a time‐lapse (TL) camera at each transect. Semivariogram analysis of the transect data was conducted, and no autocorrelation was found, indicating little spatial structure along the transects. Pairwise differences in snow depth and snow water equivalent (SWE) between land covers were calculated and compared across scales. Differences in snowpack between forested sites at the TL points corresponded to differences in canopy cover, but this relationship was not evident at the transect scale, indicating a difference in observed process across scale. TL and transect estimates had substantial bias, but consistency in error was observed, which indicates that scaling coefficients may be derived to improve point scale estimates. TL and transect measurements were upscaled to estimate grid scale means. Upscaled estimates were compared and found to be consistent, indicating that appropriately stratified point scale measurements can be used to approximate a grid scale mean when transect data are not available. These findings are important in remote regions such as the study area, where frequent transect data may be difficult to obtain. TL, transect, and upscaled means were compared with modelled depth and SWE. Model comparisons with TL and transect data indicated that bias was dependent on land cover, measurement scale, and seasonality. Modelled means compared well with upscaled estimates, but model SWE was underestimated during spring melt. These findings highlight the importance of understanding the spatial representativeness of in situ measurements and the processes those measurements represent when validating gridded snow products or assimilating data into models.  相似文献   
15.
Snowpacks and forests have complex interactions throughout the large range of altitudes where they co-occur. However, there are no reliable data on the spatial and temporal interactions of forests with snowpacks, such as those that occur in nearby areas that have different environmental conditions and those that occur during different snow seasons. This study monitored the interactions of forests with snowpacks in four forest stands in a single valley of the central Spanish Pyrenees during three consecutive snow seasons (2015/2016, 2016/2017 and 2017/2018). Daily snow depth data from time-lapse cameras were compared with snow data from field surveys that were performed every 10–15 days. These data thus provided information on the spatial and temporal changes of snow–water equivalent (SWE). The results indicated that forest had the same general effects on snowpack in each forest stand and during each snow season. On average, forest cover reduced the duration of snowpack by 17 days, reduced the cumulative SWE of the snowpack by about 60% and increased the spatial heterogeneity of snowpack by 190%. Overall, forest cover reduced SWE total accumulation by 40% and the rate of SWE accumulation by 25%. The forest-mediated reduction of the accumulation rate, in combination with the occasional forest-mediated enhancement of melting rate, explained the reduced duration of snowpacks beneath forest canopies. However, the magnitude and timing of certain forest effects on snowpack had significant spatial and temporal variations. This variability must be considered when selecting the location of an experimental site in a mountainous area, because the study site should be representative of surrounding areas. The same considerations apply when selecting a time period for study.  相似文献   
16.
SensorML是由OGC所制定的基于XML编码的传感器建模标准,该语言对于实现异构传感器数据网上共享和互操作具有很重要的作用.首先介绍SensorML的背景以及传感器模型概念,对其基础模型展开解析,最后,基于SensorML对南极中山站气象站模型建模,系统地描述了SensorML建模过程.  相似文献   
17.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   
18.
ABSTRACT

In snow-dominated basins, collection of snow data while capturing its spatio-temporal variability is difficult; therefore, integrating assimilation products could be a viable alternative for improving streamflow simulation. This study evaluates the accuracy of daily snow water equivalent (SWE) provided by the SNOw Data Assimilation System (SNODAS) of the National Weather Service at a 1-km2 resolution for two basins in eastern Canada, where SWE is a critical variable intensifying spring runoff. A geostatistical interpolation method was used to distribute snow observations. SNODAS SWE products were bias-corrected by matching their cumulative distribution function to that of the interpolated snow. The corrected SWE was then used in hydrological modelling for streamflow simulation. The results indicate that the bias-correction method significantly improved the accuracy of the SNODAS products. Moreover, the corrected SWE improved the simulation performance of the peak values. Although the uncertainty of SNODAS estimates is high for eastern Canadian basins, they are still of great value for regions with few snow stations.  相似文献   
19.
20.
We analyse spatial variability and different evolution patterns of snowpack in a mixed beech–fir stand in the central Pyrenees. Snow depth and density were surveyed weekly along six transects of contrasting forest cover during a complete accumulation and melting season; we also surveyed a sector unaffected by canopy cover. Forest density was measured using the sky view factor (SVF) obtained from digital hemispherical photographs. During periods of snow accumulation and melting, noticeable differences in snow depth and density were found between the open site and those areas covered by forest canopy. Principal component analysis provided valuable information in explaining these observations. The results indicate a high variability in snow accumulation within forest areas related to differences in canopy density. Maximum snow water equivalent (SWE) was reduced by more than 50% beneath dense canopies compared with clearings, and this difference increased during the melting period. We also found significant temporal variations: when melting began in sectors with low SVF, most of the snow had already thawed in areas with high SVF. However, specific conditions occasionally produced a different response of SWE to forest cover, with lower melting rates observed beneath dense canopies. The high values of correlation coefficients for SWE and SVF (r > 0·9) indicate the reliability of predicting the spatial distribution of SWE in forests when only a moderate number of observations are available. Digital hemispherical photographs provide an appropriate tool for this type of analysis, especially for zenith angles in the range 35–55 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号