首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3002篇
  免费   501篇
  国内免费   1314篇
测绘学   49篇
大气科学   33篇
地球物理   863篇
地质学   3175篇
海洋学   429篇
天文学   17篇
综合类   79篇
自然地理   172篇
  2024年   16篇
  2023年   59篇
  2022年   98篇
  2021年   88篇
  2020年   157篇
  2019年   195篇
  2018年   166篇
  2017年   132篇
  2016年   218篇
  2015年   168篇
  2014年   238篇
  2013年   246篇
  2012年   197篇
  2011年   258篇
  2010年   194篇
  2009年   230篇
  2008年   246篇
  2007年   233篇
  2006年   251篇
  2005年   189篇
  2004年   152篇
  2003年   132篇
  2002年   122篇
  2001年   97篇
  2000年   70篇
  1999年   79篇
  1998年   76篇
  1997年   74篇
  1996年   83篇
  1995年   58篇
  1994年   48篇
  1993年   46篇
  1992年   28篇
  1991年   24篇
  1990年   32篇
  1989年   18篇
  1988年   24篇
  1987年   15篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   4篇
  1982年   5篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有4817条查询结果,搜索用时 15 毫秒
111.
黄河水下三角洲沉积物强度变化原位测试研究   总被引:14,自引:8,他引:14  
研究区位于1964~1976年黄河由刁口入海时形成的水下三角洲叶瓣上。1995年为石油开采在潮坪上构筑的交通设施对波浪形成良好的屏障。在屏障两侧各选一典型研究区,于1999年和2002年进行了大量对比性现场原位土工测试,探讨了波浪对黄河口沉积物的次生改造作用,结果表明:(1)较强的波浪荷载作用,不会提高海底沉积物的表层强度,只是导致不均匀程度随水动力作用的时间增长有所加大:(2)较强的波浪荷载作用,使得海底表层沉积物之下一定深度范围内土体强度提高,形成强度硬层:(3)海底沉积物强度沿着剖面线在平面上呈现周期性或间隔性变化。  相似文献   
112.
某滑坡软弱夹层抗剪强度取值方法的研究   总被引:3,自引:0,他引:3  
文章主要针对软弱夹层抗剪强度取值所存在的争议,通过对贵州新街子滑坡的软弱夹层分别选择比例极限、屈服极限及峰值作为剪应力值,采用最小二乘法获得比例抗剪强度、屈服抗剪强度和峰值抗剪强度。以参数选取中应用较为成熟的反分析方法推求力学性质参数c、φ值作为判据对以上3种参数进行比较。计算结果表明:本滑坡软弱夹层中由于含泥量较大,而且粘塑性较强,屈服抗剪强度和反分析得到的抗剪强度偏差最小,比例抗剪强度偏差最大,峰值抗剪强度居中。并以此3种抗剪强度进行天然状态下滑坡稳定性验算,结果表明选用比例极限抗剪强度与当前滑坡的地质现象不符,选用峰值极限抗剪强度安全储备较低,而选取屈服极限抗剪强度最为合理。用此参数进行设计,滑坡已经得到了良好的治理。在取值研究中认为采用试验与反分析相结合的方法确定滑坡稳定性计算参数是比较合理的。以上结论为滑坡中软弱夹层抗剪强度取值的选择提供了重要的依据。  相似文献   
113.
Rock Mass Rating (RMR) measurements from 65 sites within Huntly East underground coal mine are presented. All measurements are in coal, for which the dominant discontinuities are vertical cleat. Basic RMR values using two discontinuity spacings are presented: overall RMR based on the average spacing of all individual discontinuities; and cleat zone RMR based on the average spacing between zones of cleat. Cleat orientations are highly variable, but on average approximately parallel horizontal stress axes (face cleat follows maximum horizontal stress axis, butt cleat follows minimum horizontal stress axis).Contours of RMR variations throughout the mine are used to compare rock mass conditions with geological structure. It is apparent that: (1) RMR is least within downthrown fault blocks, and particularly immediately on the downthrown sides of faults, and greatest in upthrown fault blocks; and (2) RMR contours parallel horizontal stress axes within fault-bounded blocks, and bend to parallel faults at block boundaries. From similar contours for parameters contributing to RMR, the Rock Quality Designation (RQD), groundwater rating, and discontinuity condition rating create most of the observed variations in RMR. RQD is determined from the measured discontinuity frequency and hence is a measure of the degree of fracturing of the rock mass. This is interpreted as influencing the groundwater and condition parameters directly by allowing greater water ingress. Discontinuity frequency is greatest (least spacing) in the immediate vicinity of faults, and in downthrown fault blocks, generating low RMR values. Within fault blocks RQD varies little, so RMR contours align with cleat orientations.As RMR contours, faults, stress field and cleat orientation are clearly interrelated, there is unequivocally a connection between RMR and structural geology; this allows some predictive capacity in terms of ground conditions. If geological features can be accurately defined through either drilling programs or seismic surveys, then ground conditions may be predicted before panels are driven.  相似文献   
114.
115.
Magnetic fabric and rock magnetism studies were performed on 32 mafic dikes of a Proterozoic dike swarm from the southern São Francisco Craton (SFC; Minas Gerais State, SE Brazil). Magnetic anisotropies were determined by applying anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of remanent magnetization (ARM). The latter was performed imposing both anhysteretic (total (AAR) and partial pAAR)) and isothermal remanence magnetizations (AIRM). Partial anhysteretic remanence anisotropy was performed based on remanent coercivity spectra from a pilot specimen of each site. In most sites, AMS is dominantly carried by ferromagnetic minerals, however, in some sites, the paramagnetic contribution exceeds 70% of bulk susceptibility. Rock magnetism and thin section analysis allow classifying the dikes as non-hydrothermalized and hydrothermalized. Magnetic measurement shows that the mean magnetic susceptibility is usually lower than 5×10−3 (SI). Ti-poor titanomagnetites up to pure magnetite pseudo-single-domain (PSD) grain sizes carry the majority of magnetic fabrics for non-hydrothermalized dikes whereas coarse to fine grained Ti-poor titanomagnetites carry the majority of magnetic fabrics for hydrothermalized dikes.Three primary AMS fabrics are recognized which are coaxial with ARM fabric, except for two dikes, from both non-hydrothermalized and hydrothermalized dikes. Normal AMS fabric surprisingly is not dominant (31%). The parallelism between AMS, pAAR0–30, pAAR30–60 and pAAR60–90 fabrics in the hydrothermalized dikes indicates that magnetic grains formed due to late-stage crystallization or to remobilization of iron oxides due to hydrothermal alteration after dike emplacement have acquired a mimetic fabric coaxial with the primary fabric given by coarse-grained early crystallized Ti-poor titanomagnetites. This fabric is interpreted as magma flow in which the analysis of Kmax inclination permitted the inference that the dikes were fed by horizontal or subhorizontal fluxes (Kmax<30°). Intermediate AMS fabric is the most important (41%) in the investigated swarm. It is interpreted as due to vertical compaction of a static magma column with the minimum stress along the dike strike. ARM determinations for these sites also remained intermediate except for two dikes. In one of them, AIRM fabric resulted in normal AMS fabric while for the other AAR fabric resulted in inverse AMS fabric. A combination of AMS and ARM fabrics suggest that magmatic fabric for both dikes were overprinted by some late local event, probably related to Brasiliano orogenic processes after dike emplacement. InverseInverse AMS fabric is a minority (four dikes). ARM determinations also remained inverse suggesting a primary origin for inverse AMS fabric.  相似文献   
116.
R. A. Forth   《Engineering Geology》2004,72(3-4):253-260
Consideration of groundwater is a key element in almost every construction project. The design of deep excavations for basements or underground railway station concourses below the water table require that the water pressures are taken into account. Whilst these can be considered to be hydrostatic in soil, the decreasing permeability of rock with depth and the fact that groundwater flow is invariably along discrete fractures means that the water pressure is unlikely to be hydrostatic at depth.

Groundwater control for deep excavations can be achieved by a number of methods such as grouting, pumping or structural walls or a combination of these. For tunnelling projects grouting is extensively used, but the development of sophisticated tunnelling machines has led in many cases to the demise of compressed air as a means of groundwater control.  相似文献   

117.
Fuzzy set approaches to classification of rock masses   总被引:6,自引:0,他引:6  
A. Aydin   《Engineering Geology》2004,74(3-4):227-245
Rock mass classification is analogous to multi-feature pattern recognition problem. The objective is to assign a rock mass to one of the pre-defined classes using a given set of criteria. This process involves a number of subjective uncertainties stemming from: (a) qualitative (linguistic) criteria; (b) sharp class boundaries; (c) fixed rating (or weight) scales; and (d) variable input reliability. Fuzzy set theory enables a soft approach to account for these uncertainties by allowing the expert to participate in this process in several ways. Hence, this study was designed to investigate the earlier fuzzy rock mass classification attempts and to devise improved methodologies to utilize the theory more accurately and efficiently. As in the earlier studies, the Rock Mass Rating (RMR) system was adopted as a reference conventional classification system because of its simple linear aggregation.

The proposed classification approach is based on the concept of partial fuzzy sets representing the variable importance or recognition power of each criterion in the universal domain of rock mass quality. The method enables one to evaluate rock mass quality using any set of criteria, and it is easy to implement. To reduce uncertainties due to project- and lithology-dependent variations, partial membership functions were formulated considering shallow (<200 m) tunneling in granitic rock masses. This facilitated a detailed expression of the variations in the classification power of each criterion along the corresponding universal domains. The binary relationship tables generated using these functions were processed not to derive a single class but rather to plot criterion contribution trends (stacked area graphs) and belief surface contours, which proved to be very satisfactory in difficult decision situations. Four input scenarios were selected to demonstrate the efficiency of the proposed approach in different situations and with reference to the earlier approaches.  相似文献   

118.
A rippability classification system for marls in lignite mines   总被引:1,自引:0,他引:1  
H. Basarir  C. Karpuz   《Engineering Geology》2004,74(3-4):303-318
  相似文献   
119.
The relative importance of the contribution of the lower crust and of the lithospheric mantle to the total strength of the continental lithosphere is assessed systematically for realistic ranges of layer thickness, composition, and temperature. Results are presented as relative strength maps, giving the ratio of the lower crust to upper mantle contribution in terms of crustal thickness and surface heat flow. The lithosphere shows a “jelly sandwich” rheological layering for low surface heat flow, thin to average crustal thickness, and felsic or wet mafic lower crustal compositions. On the other hand, most of the total strength resides in the seismogenic crust in regions of high surface heat flow, crust of any thickness, and dry mafic lower crustal composition.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号