首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   54篇
  国内免费   35篇
测绘学   8篇
大气科学   2篇
地球物理   160篇
地质学   112篇
海洋学   34篇
天文学   8篇
综合类   3篇
自然地理   6篇
  2024年   2篇
  2022年   3篇
  2021年   3篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   14篇
  2016年   23篇
  2015年   17篇
  2014年   23篇
  2013年   22篇
  2012年   12篇
  2011年   17篇
  2010年   12篇
  2009年   14篇
  2008年   11篇
  2007年   16篇
  2006年   22篇
  2005年   13篇
  2004年   7篇
  2003年   13篇
  2002年   8篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有333条查询结果,搜索用时 250 毫秒
161.
The concept of using a hysteretic damper as a condition assessment device that functions immediately after a damaging earthquake is realized by making use of the residual out‐of‐plane deformation of links that are arranged in slit shear walls. According to the proposed inspection procedure, the maximum drift ratio experienced by the slit wall is estimated based on the number of torsionally deformed links whose dimensions are determined so that the links would exhibit notable torsional deformation at the target deformations. The adoption of a double‐tapered shape for the links enables us to significantly increase the amount of out‐of‐plane deformation. The relationship between the dimensions and the torsional deformation of the links is established using numerical simulations. The effectiveness of the proposed condition assessment scenario is verified by using a series of cyclic loading tests for individual links and groups of links. As a hysteretic damper, the strength and stiffness of the links predicted by design equations matched well with test results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
162.
This paper examines higher mode effects in systems where the ductile mechanism for seismic design is the base moment‐rotation response. The modal properties of flexural and shear beams with uniform mass and elasticity and with a variable amount of base rotational restraint are derived. As the base fixity is released, the first mode becomes the rigid body rotation of the beam about the base, but the higher modes change much less, particularly for the shear beam model. Most response quantities that are of interest in the seismic design of typical mid‐rise buildings are controlled by the first two lateral modes, except at locations along the height where the second mode contributes little. However, the third and higher lateral modes are more significant for high‐rise buildings. Based on the theory of uniform cantilever shear beams, expressions are developed to avoid the need for a modal analysis to estimate the overturning moment, storey shear, and floor acceleration envelopes. Considering the measured response from the shake table testing of a large‐scale eight‐storey controlled rocking steel braced frame, the proposed expressions are shown to be of similar or better accuracy to a modified modal superposition technique, which combines the higher mode response from an elastic modal analysis with the response associated with achieving the maximum base overturning moment according to an inverted triangular load distribution. Because the proposed method uses only parameters that are available at the initial design stage, avoiding the analysis of a structural model, it is likely to be especially useful for preliminary design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
163.
Widely used damage indices, such as ductility and drift ratios, do not account for the influences of the duration of strong shaking, the cumulative inelastic deformation or energy dissipation in structures. In addition, the formulation and application of most damage indices have until now been based primarily on flexural modes of failure. However, evidence from earthquakes suggests that shear failure or combined shear‐flexure behavior is responsible for a large proportion of failures. Empirical considerations have been made in this paper for evaluating structural damage of low‐rise RC walls under earthquake ground motions by means of a new energy‐based low‐cycle fatigue damage index. The proposed empirical damage index is based on the results of an experimental program that comprised six shake table tests of RC solid walls and walls with openings; results of six companion walls tested under QS‐cyclic loading were used for comparison purposes. Variables studied were the wall geometry, type of concrete, web shear steel ratio, type of web shear reinforcement, and testing method. The index correlates the stiffness degradation and the destructiveness of the earthquake in terms of the duration and intensity of the ground motions. The stiffness degradation model considers simultaneously the increment of damage associated to the low‐cycle fatigue, energy dissipation, and the cumulative cyclic parameters, such as displacement demand and hysteretic energy dissipated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
164.
165.
Allowing a structure to uplift and rock during an earthquake is one way in which activated forces can be capped and damage to the structure avoided or minimised. Slip‐friction connectors (also known as slotted‐bolt connectors) were originally developed for use in steel construction, but for this research have been adapted for use as hold‐downs in an experimental 2.4 m × 2.4 m rigid timber shear wall. A novel approach is used to achieve the desired sliding threshold in the connectors, and the wall uplifts when this threshold is reached. From a series of quasi‐static cyclic tests, it is shown that slip‐friction connectors can impart ductile and elasto‐plastic characteristics to what would otherwise be essentially brittle structures. Because forces on the wall were capped by the slip‐friction connectors to levels well below the design level, no damage to the wall was observed. Self‐centring potential was also found to be excellent. The slip‐friction connectors themselves are of a unique design and have proven to be robust and durable, adequately performing their duty even after almost 14 m of cumulative travel under high contact pressures. To resist base shear without unduly affecting rocking behaviour, a new type of shear‐key is proposed and implemented, and a procedure developed to quantify its influence on overall wall behaviour. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
166.
钢筋混凝土带暗支撑核心简体抗震性能试验研究   总被引:13,自引:3,他引:10  
本文在带暗支撑剪力墙研究的基础上,进一步提出了带暗支撑核心筒体,通1/6缩尺的1个带暗支撑筒体结构和1个普通筒体结构的低周反复荷载试验,比较分析了它们的承载力、刚度、延性、滞回特性、耗能能力及破坏机制。试验表明,带暗支撑筒体比普通筒体的抗震性能明显提高。  相似文献   
167.
In the present study, a new methodology for reliability assessment of the internal stability of reinforced soil walls, taking into account the highly strength-redundant character of these structures, is suggested. Internal stability is probabilistically modeled as a series configuration and as an r-out-of-m configuration. Consideration of redundancy is formulated based on transitional probabilities and Markov stochastic processes. Following the suggested framework, the updated reliability of the structure, as failure propagates among the different layers of reinforcement, can be quantified. As an illustration of the developed methodology, an example of a reinforced soil wall is analyzed and results are discussed.  相似文献   
168.
A rigid block based lower bound limit analysis method for analyzing stability of fractured rock mass in 2D and 3D conditions is proposed. The rock bridge effects are considered in the general formation. No assumptions are imposed on the inter-element forces, and the solution obtained is statically admissible. The proposed method is theoretically rigorous and simple. The validation and efficiency of the proposed method have been demonstrated through three typical types of slopes, indicating that apart from the fractures, rock bridge plays a key role in stabilizing rock blocks, which should be greatly concerned in stability analysis of rock mass.  相似文献   
169.
In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data.  相似文献   
170.
The earthquake response of cantilever retaining walls is explored by means of theoretical analyses and shaking table testing conducted at University of Bristol (EERC - EQUALS). The theoretical investigations employ both limit analysis and wave-propagation methods, which take into account different aspects of the problem such as inertia, strength, kinematics and compatibility of deformations. The experimental programme encompasses different combinations of retaining wall geometries, soil configurations and input ground motions. The response analysis of the systems at hand aims at shedding light onto salient features of the problem, such as: (1) the magnitude of soil thrust and its point of application; (2) the relative sliding versus rocking of the wall base and the corresponding failure modes; (3) the importance of the interplay between soil stiffness, wall dimensions and excitation characteristics, as affecting the above; (4) the importance of wall dynamics and phase differences between peak stresses and displacements. The results of the experimental investigations are in good agreement with the theoretical models and provide a better understanding on the complex mechanics of the problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号