首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   197篇
  国内免费   338篇
测绘学   29篇
大气科学   85篇
地球物理   611篇
地质学   731篇
海洋学   223篇
天文学   10篇
综合类   24篇
自然地理   39篇
  2024年   3篇
  2023年   8篇
  2022年   38篇
  2021年   46篇
  2020年   43篇
  2019年   55篇
  2018年   60篇
  2017年   70篇
  2016年   63篇
  2015年   73篇
  2014年   80篇
  2013年   97篇
  2012年   83篇
  2011年   79篇
  2010年   85篇
  2009年   104篇
  2008年   92篇
  2007年   90篇
  2006年   114篇
  2005年   65篇
  2004年   63篇
  2003年   37篇
  2002年   46篇
  2001年   36篇
  2000年   32篇
  1999年   37篇
  1998年   32篇
  1997年   16篇
  1996年   17篇
  1995年   17篇
  1994年   12篇
  1993年   10篇
  1992年   7篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1752条查询结果,搜索用时 390 毫秒
181.
This paper investigates the intact and damage survivability of a floating–moored Oscillating Water Column (OWC) device using physical model experiments and Computational Fluid Dynamics (CFD) simulations. Different extreme wave conditions have been tested using irregular and regular wave conditions. The device was moored to the tank floor via four vertical taut lines and the effect of the mooring line pre–tension on the device response was studied. It was found that the instantaneous position of the floating device was a key factor in the survivability analysis such that a certain irregular wave train that might not include the largest wave could induce the maximum response. Reducing the pre–tension minimized the maximum surge, but significantly increased the maximum tension due to mooring slack events causing snatch loads. A design regular wave with a period equal to the peak period and a height of 1.9–2.0 times the significant wave height could reasonably predict the same maximum line tension as the irregular sea state, but a smaller wave height was required to achieve the maximum surge. A single failure in the mooring system increased the maximum tension by 1.55 times the intact tension. For a damaged mooring system, using the same design regular wave condition derived from the survivability analysis with an intact mooring system could result in overestimating the maximum tension by more than 20% in comparison to the tension from the irregular sea state, but a smaller regular wave height or a different regular wave condition representing another sea state could lead to the same maximum tension. This highlighted the importance of investigating survival conditions with a damaged mooring system instead of simply using the same conditions derived for the intact mooring system.  相似文献   
182.
The paper presents a discussion of the ventilation inception and air drawing prediction of ships propellers, aiming to predict under what conditions ventilation will happen, and the actual physical mechanism of the ventilation.Three different types of ventilation inception mechanisms are included in our discussion: free surface vortex ventilation, ventilation by sucking down the free surface without forming a vortex as well as ventilation by propeller coming out of the water. Ventilation prediction is based on a series of model tests, where the propeller is tested in different levels of intermittent ventilation. The use of underwater video gives a visual understanding of the ventilation phenomena.Ventilation by vortex formation has analogies with other phenomena, such as the inlet vortex in pump sumps, ground vortex at the inlet of the aircraft engines and the Propeller Hull Vortex Cavitation (PHVC). The paper includes comparison between Propeller Hull Vortex Cavitation (PHVC) and Propeller Free Surface Vortex Ventilation (PFSVV) as well as comparison between PFSVV and vortex formations of aero engines during high power operation near a solid surface.Experimental data based on several different model tests shows the boundary between the vortex forming, non-vortex forming and free surface ventilation flow regimes. For comparison the following parameters, which determined the intensity of the hydrodynamic interaction between the propeller and free surface have been used: propeller load coefficient cT, tip clearance ratio c/D, propeller submergence ratio h/R, ambient velocity Vi and flow cavitation/ventilation number σcav/σvent.  相似文献   
183.
We report a theoretical investigation of an elastic and slender fluid-conveying pipe with a top-end excitation subjected to uniform cross flows. Considering the mean drag force and the time varying vortex-induced lift force which is modeled using a nonlinear van der Pol oscillator, the nonlinear partial differential equations of the motion of coupled fluid-structure system are constructed and simplified to a reduced-order model through the Galerkin-type discretization. By virtue of quasi-static displacement conditions, the characteristics of vortex-induced vibration of the pipe are evaluated for the first two lock-in modes. The results show that the top-end excitation can increase the vibration amplitude of the pipe when the cross-flow speed is out of the lock-in regions. When the cross-flow speed is within the lock-in region, however, the top-end oscillation causes a transition between quasi-periodic and periodic in the responses of the pipe, significantly reducing or increasing the vibration amplitudes depending on the excitation acceleration and frequency. This finding has an important guidance in suppressing vortex-induced vibrations by balancing the internal fluid velocity and the top-end excitation.  相似文献   
184.
为了提高中心管振荡水柱波浪能利用技术能量转换效率,基于新的认识和目前常用的2.4米导航灯标,对中心管尾部设计了三种模型并在造波水槽中进行能量转换性能试验。试验结果表明:直管型中心管俘获宽度比最高达到了70.25%,但通频带宽度窄;加长喇叭口型中心管略好于喇叭口型中心管;在喷咀比为0.02条件下,加长喇叭口型中心管浮体有较高双峰俘获宽度比,波峰为40.0%,波谷为31.6%,通频带宽,为随机波下高效转换创造了条件。最高俘获宽度比和双峰通频带特性实验数据结果都优于历史文献值。根据试验数据对一些适合小型海洋仪器供电的样机进行了设计,设计的样机具有较高的性价比。  相似文献   
185.
A new passive seismic response control device has been developed, fabricated, and tested by the authors and shown to be capable of producing negative stiffness via a purely mechanical mechanism, thus representing a new generation of seismic protection devices. Although the concept of negative stiffness may appear to be a reversal on the desired relationship between the force and displacement in structures (the desired relationship being that the product of restoring force and displacement is nonnegative), when implemented in parallel with a structure having positive stiffness, the combined system appears to have substantially reduced stiffness while remaining stable. Thus, there is an ‘apparent weakening and softening’ of the structure that results in reduced forces and increased displacements (where the weakening and softening is of a non‐damaging nature in that it occurs in a seismic protection device rather than within the structural framing system). Any excessive displacement response can then be limited by incorporating a damping device in parallel with the negative stiffness device. The combination of negative stiffness and passive damping provides a large degree of control over the expected performance of the structure. In this paper, a numerical study is presented on the performance of a seismically isolated highway bridge model that is subjected to various strong earthquake ground motions. The Negative Stiffness Devices (NSDs) are described along with their hysteretic behavior as obtained from a series of cyclic tests wherein the tests were conducted using a modified design of the NSDs (modified for testing within the bridge model). Using the results from the cyclic tests, numerical simulations of the seismic response of the isolated bridge model were conducted for various configurations (with/without negative stiffness devices and/or viscous dampers). The results demonstrate that the addition of negative stiffness devices reduces the base shear substantially, while the deck displacement is limited to acceptable values. This assessment was conducted as part of a NEES (Network for Earthquake Engineering Simulation) project which included shaking table tests of a quarter‐scale highway bridge model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
186.
A variant type of tuned mass damper (TMD) termed as ‘non‐traditional TMD (NTTMD)’ is recently proposed. Mainly focusing on the employment of TMD for seismic response control, especially for base‐isolated or high‐rise structures, this paper aims to derive design formulae of NTTMDs based on two methodologies with different targets. One is the fixed points theory with the performance index set as the maximum magnitude of the frequency response function of the relative displacement of the primary structure with respect to the ground acceleration, and the other is the stability maximization criterion (SMC) to make the free vibration of the primary structure decay in the minimum duration. Such optimally designed NTTMDs are compared with traditional TMDs by conducting both numerical simulations and experiments. The optimum‐designed NTTMDs are demonstrated to be more effective than the optimum‐designed traditional TMDs, with smaller stroke length required. In particular, the effectiveness of the TMDs combined with a base‐isolated structure is investigated by small‐scale model experimental tests subjected to a time scaled long period impulsive excitation, and it is demonstrated that the SMC‐based NTTMD can suppress structural free vibration responses in the minimum duration and requires much smaller accommodation space. Additionally, a small‐scale shaking table experiment on a high‐rise bending model attached with a SMC‐based NTTMD is conducted. This study indicates that NTTMD has a high potential to apply to seismic response control or retrofit of structures such as base‐isolated or central column‐integrated high‐rise structures even if only a limited space is available for accommodating TMDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
187.
A new mass rig system is proposed to minimize the deficiencies in current shaking table testing setups. This is accomplished by placing the inertial mass on a convex path designed to impose P‐Delta demands on slender cantilever columns. The design and performance of the mass rig system, and the principles used in deriving the equations of motion and their analytical validation against results obtained from shaking table tests, are presented. Formulation of the governing equations of motion was based on Lagrangian mechanics and solved using an implicit linear acceleration method with an adaptive time step formulation. Friction developed in the sliding system was also incorporated in the equations of motion. Experimental results validated the accuracy in the derivation and solution of the equations of motion. Validated by analytical and experimental results, P‐Delta effects were found to increase the displacement demands on slender columns in the low‐frequency range of acceleration input, while in the high‐frequency range P‐Delta effects led to no increase and in some cases even a reduction in displacement demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
188.
以北京地铁6号线新华大街站公共区Y型柱地铁车站为工程背景,利用FLAC3D有限差分程序数值模拟分析,研究超浅埋大跨度、高断面、Y形柱地铁车站结构分别在仅输入水平向地震动和同时输入水平向与竖向地震动情况下的地震响应特性。结果表明:(1)与仅输入单向地震动相比,双向地震动耦合作用下车站各测点的峰值加速度和应力值均增大,而相对水平位移减小,且随着输入地震动强度的增加,竖向地震动影响率呈递减趋势;(2)双向地震动作用下,同一工况Y形柱叉支处各测点的竖向位移明显增大,且各测点的竖向位移值较为均匀,而单向水平地震动作用下各测点竖向位移差异较大;(3)与单向水平地震动相比,竖向地震动的输入对各测点间的水平方向地震动特性规律影响较小。  相似文献   
189.
This research investigates the seismic design method and the cyclic inelastic behavior of the bottom column, also called the vertical boundary element (VBE), in steel plate shear walls (SPSWs). This study consists of two parts. This Part 1 paper discusses the anticipated pushover responses for properly designed SPSWs and the possible inelastic responses of the bottom VBE at various levels of inter‐story drift. Considering both the tension field action of the infill panel and the sway action of the boundary frame, this study develops a simplified method to compute the flexural and shear demands in the bottom VBE. Based on the superposition method, this approach considers various plastic hinge forming locations at different levels of inter‐story drift. One of the key performance‐based design objectives is to ensure that the top ends of the bottom VBEs remain elastic when the SPSWs are subjected to the maximum considered earthquake. This paper presents the comprehensive design procedures for the bottom VBE. Furthermore, this study conducted cyclic performance evaluation tests of three full‐scale two‐story SPSWs at the Taiwan National Center for Research on Earthquake Engineering in 2011 to validate the effectiveness of the proposed design methods. The experimental program, cyclic inelastic responses of the SPSWs and bottom VBEs, and numerical simulations are presented in Part 2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
190.
The area occupied by the former Texcoco Lake was part of a system of lakes inside the Basin of Mexico. The subsoil there has been studied in the past but there is still a need for more and more thorough investigations into the dynamic properties of its highly compressible clays. This paper describes the results of an experimental laboratory research in which a triaxial cell fitted with bender elements was used to measure shear wave velocities (Vs) in clay specimens from the former Texcoco Lake. Soil specimens were subjected to isotropic loading–unloading cycles and values of Vs were determined during the saturation stage and after each stress increment or decrement. Our results show that irrespective of the testing method, shear waves velocities differ in no more than 7–15%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号