首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2131篇
  免费   351篇
  国内免费   253篇
测绘学   86篇
大气科学   46篇
地球物理   942篇
地质学   1118篇
海洋学   230篇
天文学   6篇
综合类   85篇
自然地理   222篇
  2024年   27篇
  2023年   66篇
  2022年   63篇
  2021年   84篇
  2020年   120篇
  2019年   109篇
  2018年   90篇
  2017年   135篇
  2016年   119篇
  2015年   93篇
  2014年   130篇
  2013年   145篇
  2012年   134篇
  2011年   145篇
  2010年   149篇
  2009年   121篇
  2008年   115篇
  2007年   130篇
  2006年   124篇
  2005年   104篇
  2004年   64篇
  2003年   55篇
  2002年   53篇
  2001年   42篇
  2000年   36篇
  1999年   40篇
  1998年   41篇
  1997年   42篇
  1996年   35篇
  1995年   20篇
  1994年   16篇
  1993年   19篇
  1992年   26篇
  1991年   10篇
  1990年   13篇
  1989年   9篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1982年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2735条查询结果,搜索用时 15 毫秒
51.
52.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   
53.
Changes in mangal area were quantified in the eastern Exmouth Gulf over six years (1999–2004) after Cyclone Vance using Landsat TM satellite imagery and aerial photography. Vance was the strongest tropical cyclone ever to impact the Australian mainland before 2006 and produced wind gusts of more than 280 km h−1. Image data were processed using ENVI™ and IDRISI™ software. Three sets of Landsat TM images from 1999 (a few days before the cyclone), 2002 and 2004 were used, along with 2004 digital aerial photography. A ‘common’ subset of 904 km2 was selected from all images and classification was developed using ISODATA™ unsupervised classification to identify spectrally distinct areas followed by principal component analysis (PCA), vegetation indices and supervised classification. Some 12,800 ha of mangrove habitat was present before the cyclone and approximately 5700 ha (44%) was removed by it. Most mangroves lost (74%) between 1999 and 2004 were converted either to bare sediment or to live saltmarshes and this occurred mostly between 1999 and 2002. Five basic categories of damage were conspicuous from imagery and field observations, and evidence suggests that much of the loss was due to the longer term consequences of sediment deposition or smothering, rather than the immediate effects of wind or waves. Mangroves exhibited accelerated recovery between 2002 and 2004, and around 1580 ha regenerated during this time, amounting to a return of 68% of their former coverage. At this recovery rate we estimate that they should have returned to their pre-cyclone area by 2009. Over half of the saltmarsh habitats (54%) were removed by the cyclone (4060 ha) but their recovery has been far more rapid than mangroves. After 5 years, saltmarshes had returned to 87% of their previous area. The 5700 ha of mangrove habitat damaged by Cyclone Vance exceeds any anthropogenic impact that has ever taken place in Western Australia by several orders of magnitude.  相似文献   
54.
The construction of reservoir models is frustrated by the fact that core and well cover only a fraction of the reservoir volume and it is therefore difficult to determine features like facies shape, -size, and -distribution, inter- and intra-facies boundaries and lateral trends from them. These features are, however, critical to fluid flow and they should necessarily be incorporated in the reservoir model and we therefore propose to systematically describe geometry and distribution of facies. To this end we make use of “standard facies models” that a priori contain all elements and boundaries of facies for a number of typical depositional environments.  相似文献   
55.
Differential compaction plays a key role in influencing the palaeogeographic organisation of many depositional systems. In the Jurassic Walloon Subgroup, Surat Basin, Eastern Australia, the process of compensational stacking contributes significantly to the complex coal layer architecture and is documented in mine exposure, borehole and seismic datasets. Despite this understanding, current best-practices do not formally consider the mechanics of compensational stacking when populating palaeogeography facies in coal seam gas (CSG) reservoir models. To address this limitation, a hybrid modelling workflow was developed in which numerical rules representing the process of differential compaction are used explicitly to condition an iterative workflow containing traditional geostatistical facies modelling algorithms. The workflow is facilitated by a newly developed open source plugin which allows grid decompaction in Schlumberger PETREL™ 2015. Application of the workflow was tested in a CSG production area containing closely spaced wellbores and a 3D seismic survey. In this area, facies models were constructed using both traditional geostatistical approaches and the newly developed hybrid methodology. Comparison of these models suggests that facies models constructed via unconstrained geostatistical approaches often result in unrepresentative realisations, inconsistent with coal seam architectures as observed in seismic and outcrop. The hybrid geostatistical-forward modelling approach developed during this study was better able to reproduce complex alluvial stacking patterns, particularly with respect to coal seam amalgamation, bifurcation and washout.  相似文献   
56.
Delta-front sand bodies with large remaining hydrocarbon reserves are widespread in the Upper Cretaceous Yaojia Formation in the Longxi area of the Western Slope, Songliao Basin, China. High-resolution sequence stratigraphy and sedimentology are performed based on core observations, well logs, and seismic profile interpretations. An evaluation of the reservoir quality of the Yaojia Formation is critical for further petroleum exploration and development. The Yaojia Formation is interpreted as a third-order sequence, comprising a transgressive systems tract (TST) and a regressive systems tract (RST), which spans 4.5 Myr during the Late Cretaceous. Within this third-order sequence, nine fourth-order sequences (FS9–FS1) are recognized. The average duration of a fourth-order sequence is approximately 0.5 Myr. The TST (FS9–FS5) mostly comprises subaqueous distributary channel fills, mouth bars, and distal bars, which pass upward into shallow-lake facies of the TST top (FS5). The RST (FS4–FS1) mainly contains subaqueous distributary-channel and interdistributary-bay deposits. Based on thin-sections, X-ray diffraction (XRD), scanning electron microscope (SEM) and high-pressure mercury-intrusion (HPMI) analyses, a petrographic study is conducted to explore the impact of the sedimentary cyclicity and facies changes on reservoir quality. The Yaojia sandstones are mainly composed of lithic arkoses and feldspathic litharenites. The sandstone cements mostly include calcite, illite, chlorite, and secondary quartz, occurring as grain coating or filling pores. The Yaojia sandstones have average core plug porosity of 18.55% and permeability of 100.77 × 10−3 μm2, which results from abundant intergranular pores and dissolved pores with good connectivity. Due to the relatively coarser sediments and abundant dissolved pores in the feldspars, the FS4–FS1 sandstones have better reservoir quality than the FS9–FS5 sandstones, developing relatively higher porosity and permeability, especially the FS1 and FS2 sandstones. The source–reservoir–cap-rock assemblages were formed with the adjoining semi-deep lake mudstones that were developed in the Nenjiang and Qingshankou Formations. This study reveals the deposition and distribution of the delta-front sand bodies of the Yaojia Formation within a sequence stratigraphic framework as well as the factors controlling the Yaojia sandstones reservoir quality. The research is of great significance for the further exploration of the Yaojia Formation in the Longxi area, as well as in other similar lacustrine contexts.  相似文献   
57.
Shixi Bulge of the central Junggar Basin in western China is a unique region that provides insight into the geological and geochemical characteristics of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks in the Shixi Bulge mainly consist of striped lava and agglomerate, as well as breccia lava and tight tuff. Volcanic rocks differ in porosity and permeability. Striped lava exhibits the highest porosity (average: 14.2%) but the lowest permeability (average: 0.67 × 10−15 m) among the rock types. Primary gas pores are widely developed and mostly filled. Secondary dissolution pores and fractures are two major reservoir storage spaces. Capillary pressure curves suggest the existence of four pore structure types of reservoir rocks. Several factors, namely, lithology, pore structure, and various diagenesis, govern the physical properties of volcanic rocks. The oil is characterized by a high concentration of tricyclic terpane, a terpane distribution of C23 < C21 > C20, and sterane distributions of C27 < C28 < C29 and C27 > C28 < C29. Oil and gas geochemistry revealed that the oil is a mixture derived primarily from P2w source rock and secondarily from P1j source rock in the sag west of Pen-1 Well. The gases are likely gas mixtures of humic and sapropelic organic origins, with the sapropelic gas type dominant in the mixture. The gas mixture is most likely cracked from kerogen rather than oils. The Carboniferous volcanic reservoirs in Shixi Bulge share some unique characteristics that may provide useful insights into the various roles of different volcanic reservoir types in old volcanic provinces. The presence of these reservoirs will undoubtedly encourage future petroleum exploration in volcanic rocks up to the deep parts of sedimentary basins.  相似文献   
58.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   
59.
In 2013, the first discovery of gas pools in well LS 208 in intrusive rocks of the Songliao Basin (SB), NE China was made in the 2nd member of the Yingcheng Formation in the Yingtai rift depression, proving that intrusive rocks of the SB have the potential for gas exploration. However, the mechanisms behind the origin of reservoirs in intrusive rocks need to be identified for effective gas exploration. The gas pool in intrusive rocks can be characterized as a low-abundance, high-temperature, normal-pressure, methane-rich, and lithologic pool based on integrated coring, logging, seismic, and oil test methods. The intrusive rocks show primary and secondary porosities, such as shrinkage fractures (SF), spongy pores (SP), secondary sieve pores (SSP), and tectonic fractures (TF). The reservoir is of the fracture–pore type with low porosity and permeability. A capillary pressure curve for mercury intrusion indicates small pore-throat size, negative skewness, medium–high displacement pressure, and middle–low mercury saturation. The development of fractures was found to be related to the quenching effects of emplacement and tectonic inversion during the middle–late Campanian. SP and SSP formed during two phases. The first phase occurred during emplacement of the intrusive rock in the late Albian, when the intrusions underwent alteration by organic acids. The second phase occurred between the early Cenomanian and middle Campanian, when the intrusions underwent alteration by carbonic acid. The SF formed prior to oil charging, the SSP + SP formed during oil charging, and the TF formed during the middle–late Campanian and promoted the distribution of gas pools throughout the reservoir. The intrusive rocks in the SB and the adjacent basins were emplaced in the mudstone and coal units, and have great potential for gas exploration.  相似文献   
60.
Upper Carboniferous sandstones make one of the most important tight gas reservoirs in Central Europe. This study integrates a variety of geothermometers (chlorite thermometry, fluid inclusion microthermometry and vitrinite reflection measurements) to characterize a thermal anomaly in a reservoir outcrop analog (Piesberg quarry, Lower Saxony Basin), which is assumed responsible for high temperatures of circa 300 °C, deteriorating reservoir quality entirely. The tight gas siliciclastics were overprinted with temperatures approximately 90–120 °C higher compared to outcropping rocks of a similar stratigraphic position some 15 km to the west. The local temperature increase can be explained by circulating hydrothermal fluids along the fault damage zone of a large NNW-SSE striking fault with a displacement of up to 600 m in the east of the quarry, laterally heating up the entire exposed tight gas sandstones. The km-scale lateral extent of this fault-bound thermal anomaly is evidenced by vitrinite reflectance measurements of meta-anthracite coals (VRrot ∼ 4.66) and the temperature-related diagenetic overprint. Data suggest that this thermal event and the associated highest coalification was reached prior to peak subsidence during Late Jurassic rifting (162 Ma) based on K-Ar dating of the <2 μm fraction of the tight gas sandstones. Associated stable isotope data from fluid inclusions, hosted in a first fracture filling quartz generation (T ∼ 250 °C) close to lithostatic fluid pressure (P ∼ 1000 bars), together with authigenic chlorite growth in mineralized extension fractures, demonstrate that coalification was not subject to significant changes during ongoing burial. This is further evidenced by the biaxial reflectance anisotropy of meta-anthracite coals. A second event of quartz vein formation occurred at lower temperatures (T ∼ 180 °C) and lower (hydrostatic) pressure conditions (P ∼ 400 bars) and can be related to basin inversion. This second quartz generation might be associated with a second event of illite growth and K-Ar ages of 96.5–106.7 Ma derived from the <0.2 μm fraction of the tight gas sandstones.This study demonstrates the exploration risk of fault-bound thermal anomalies by deteriorating entirely the reservoir quality of tight gas sandstones with respect to porosity and permeability due to the cementation with temperature-related authigenic cements. It documents that peak temperatures are not necessarily associated with peak subsidence. Consequently, these phenomena need to be considered in petroleum system models to avoid, for example, overestimates of burial depth and reservoir quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号