首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2740篇
  免费   423篇
  国内免费   474篇
测绘学   142篇
大气科学   315篇
地球物理   919篇
地质学   1152篇
海洋学   175篇
天文学   9篇
综合类   327篇
自然地理   598篇
  2024年   13篇
  2023年   31篇
  2022年   59篇
  2021年   80篇
  2020年   81篇
  2019年   83篇
  2018年   71篇
  2017年   77篇
  2016年   83篇
  2015年   86篇
  2014年   126篇
  2013年   114篇
  2012年   120篇
  2011年   103篇
  2010年   93篇
  2009年   126篇
  2008年   152篇
  2007年   185篇
  2006年   175篇
  2005年   159篇
  2004年   141篇
  2003年   166篇
  2002年   129篇
  2001年   132篇
  2000年   127篇
  1999年   102篇
  1998年   109篇
  1997年   120篇
  1996年   107篇
  1995年   108篇
  1994年   86篇
  1993年   64篇
  1992年   51篇
  1991年   40篇
  1990年   27篇
  1989年   21篇
  1988年   25篇
  1987年   18篇
  1986年   20篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1954年   5篇
排序方式: 共有3637条查询结果,搜索用时 15 毫秒
21.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   
22.
We present magnetic field data collected over the Mid-Atlantic Ridge in the vicinity of the Atlantis Fracture Zone and extending out to 10 Ma-old lithosphere. We calculated a magnetization distribution which accounts for the observed magnetic field by performing a three-dimensional inversion in the presence of bathymetry. Our results show the well-developed pattern of magnetic reversals over our study area. We observe a sharp decay in magnetization from the axis out to older lithosphere and we attribute this decay to progressive low temperature oxidation of basalt. In crust which is 10 Ma, we observe an abrupt increase in magnetic field intensity which could be due to an increase in the intensity of magnetization or thickness of the magnetic source layer. We demonstrate that because the reversal epoch was of unusually long duration, a two-layer model comprised of a shallow extrusive layer and a deeper intrusive layer with sloping polarity boundaries can account for the increase in the amplitude of anomaly 5. South of the Atlantis Fracture Zone, high magnetization is correlated with bathymethic troughts at segment end points and lower magnetization is associated with bathymetric highs at segment midpoints. This pattern can be explained by a relative thinning of the magnetic source layer toward the midpoint of the segment. Thickening of the source layer at segment endpoints due to alteration of lower oceanic crust could also cause this pattern. Because we do not observe this pattern north of the fracture zone, we suggest it is a result of the nature of crustal formation process where mantle upwelling is focused. South of the fracture zone, reversals along discontinuity traces only continue to crust 2 Ma old. In crust >2 Ma, we observe bands of high, positive magnetization along discontinuity traces. We suggest that within the discontinuity traces, a high, induced component of magnetization is produced by serpentinized lower crust/upper mantle and this masks the contribution of basalts to the magnetic anomaly signal.  相似文献   
23.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   
24.
The South China Sea (SCS) is a marginal sea off shore Southeast Asia. Based on magnetic study, oceanic crust has been suggested in the northernmost SCS. However, the crustal structure of the northernmost SCS was poorly known. To elaborate the crustal structures in the northernmost SCS and off southwest Taiwan, we have analyzed 20 multi-channel seismic profiles of the region. We have also performed gravity modeling to understand the Moho depth variation. The volcanic basement deepens southeastwards while the Moho depth shoals southeastwards. Except for the continental margin, the northernmost SCS can be divided into three tectonic regions: the disturbed and undisturbed oceanic crust (8–12 km thick) in the southwest, a trapped oceanic crust (8 km thick) between the Luzon-Ryukyu Transform Plate Boundary (LRTPB) and Formosa Canyon, and the area to the north of the Formosa Canyon which has the thickest sediments. Instead of faulting, the sediments across the LRTPB have only displayed differential subsidence offset of about 0.5–1 s in the northeast side, indicating that the LRTPB is no longer active. The gravity modeling has shown a relatively thin crust beneath the LRTPB, demonstrating the sheared zone character along the LRTPB. However, probably because of post-spreading volcanism, only the transtension-shearing phenomenon of volcanic basement in the northwest and southeast ends of the LRTPB can be observed. These two basement-fractured sites coincide with low gravity anomalies. Intensive erosion has prevailed over the whole channel of the Formosa Canyon.  相似文献   
25.
In 1998, the Australian Government released Australia's Oceans Policy (AOP), a world first policy initiative focused on providing a framework for integrated ecosystem-based management of Australia's vast marine domain. The South East Regional Marine Plan, the first regional marine plan to be implemented under AOP, was released on 21 May 2004. This paper argues that although full integration across sectors and jurisdictions has not occurred, new AOP initiatives, institutions and governance processes have considerably increased sectoral and jurisdictional coordination in the South East region.  相似文献   
26.
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals’ behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins (Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature–time–depth recorders (TTDRs) to record dive depth and sea temperature. The penguins’ foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0–200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen Plateau.  相似文献   
27.
南海北部陆缘地壳结构探测结果分析   总被引:29,自引:4,他引:29  
深部地震和重力资料反演揭示了南海北部陆缘地壳结构在总体上由北部的华南沿海(厚约30km)向南部的洋盆(5──8km)逐渐减薄。南海的近SN向拉张不仅造成南北方向地壳结构的巨大变化,也造成东西向的明显变化。在南海北部陆缘的西部,局部拉张产生了一系列裂谷构造。西沙海槽作为一条狭窄的陆内裂谷向西延伸,海槽南北两侧地壳厚度超过25km,海槽中部地壳减薄至不足10km。西端的莺歌海盆地地壳厚仅5km,缺少明显的壳内反射-折射。在珠江口盆地中部,地壳厚度在下陆坡明显减薄,地壳下部存在较薄的(3──4km)高速层(地震波速7.2──7.5km·s-1);在珠江口盆地东部,地壳底部存在约 10km厚、300km宽的高速层。在台湾地区,由于弧陆碰撞,曾经减薄的陆壳在碰撞带增厚,莫霍面深度超过30km。南海北部陆缘在裂谷拉张和海底扩张期间岩浆活动平静,表明南海北部陆缘为非火山型陆缘。  相似文献   
28.
A wide-angle seismic survey, combining ocean-bottom seismometers (OBS) and multi-channel seismic (MCS) profiling, was implemented in the southwestern Ryukyu subduction zone during August and September 1995. In this paper, we present the data analysis of eight OBSs and the corresponding MCS line along profile EW9509-1 from this experiment. Seismic data modeling includes identification of refracted and reflected arrivals, initial model building from velocity analysis of the MCS data, and simultaneous and layer-stripping inversions of the OBS and MCS arrivals. The velocity-interface structure constructed along profile EW9509-1 shows that the northward subduction of the Philippine Sea Plate has resulted in a northward thickening of the sediments of the Ryukyu Trench and the Yaeyama accretionary wedge north of the trench. The boundary between the subducting oceanic crust and the overriding continental crust (represented by a velocity contour of 6.75 km/s) and a sudden increase of the subducting angle (from 5 degrees to 25 degrees) are well imaged below the Nanao Basin. Furthermore, velocity undulation and interface variation are found within the upper crust of the Ryukyu Arc. Therefore, the strongest compression due to subduction and a break-off of the slab may have occurred and induced the high seismicity in the forearc region. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
29.
白云凹陷地球物理场及深部结构特征   总被引:13,自引:2,他引:13  
珠江口盆地白云凹陷是南海最具代表性的第三系深水陆坡沉积区。以穿过白云凹陷中部的一条深反射地震剖面(14s)为研究基础,采用综合地球物理研究方法分析了该区地球物理场特征,根据重力异常平面等值线勾画了白云凹陷的形态,并提取该测线相对应的重磁剖面数据,利用重磁资料和地震剖面进行了综合反演。以深剖面地震资料建立了地质模型,利用所得的重力数据进行了研究深部结构的正演拟合,实测与计算值拟合较好,支持中生代俯冲洋壳存在的观点;同时结合地震资料对深部结构进行了分析,该区莫霍面由陆向海抬升,呈阶梯状变化,地壳厚度逐渐减薄,具有大陆边缘陆壳向洋壳过渡的特征。根据地质模型还进行了变密度综合反演拟合来分析基底岩性特征,该区基底主要为中酸性岩浆岩,部分为变质岩和基性火山岩,岩石密度由陆向洋逐渐减小,磁性体分布不均。  相似文献   
30.
酸溶——催化极谱法测定地质样品中的钨、钼   总被引:3,自引:0,他引:3  
陶秋丽 《陕西地质》2008,26(1):82-86
本文采用混合酸溶解样品,对影响催化体系稳定的酸度、温度和不同反应时间的因素分别进行了对比试验,确定催化体系相对稳定的最佳条件,经过大量样品的分析验证,分析方法可靠。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号