New radio and X-ray data are reported for the rich cluster Abell 2319. This object is known from optical data to consist of two separate clusters, which are displaced by about 10′ in the NW direction, and could be in a pre-merger state.
In the radio domain, the cluster is characterized by the presence of a central diffuse halo source, more extended and powerful than the prototype halo in the Coma cluster. The radio halo shows an irregular structure, elongated in the NE-SW direction, and also extended towards the NW. We also report data on the extended radio galaxies located within the halo, or in its proximity.
The cluster X-ray brightness distribution shows an elongated structure towards the NW, in the radial region between 6′–12′, i.e. in the direction of the subcluster. This feature is exactly coincident with the NW extension of the radio halo. In addition, more substructural features are identified which could be due to an ongoing merger of the cluster with yet another mass component.
The radio halo morphology is correlated with the X-ray structure and the existence of merger processes in the cluster. The cluster merger can provide energy to maintain the radio halo, while the origin of the relativistic particles seems more problematic. 相似文献
Velocity determination of 131 head echoes recorded during Perseid meteor shower observations by the Canadian 2 MW radar, has
been performed under the assumption of either their constant velocity or of its linear change with time. Even though the constant
velocities concentrated at 60 km s-1 generally accepted for the Perseids, a substantial number of echoes had velocities either
lower than 60 km s-1 or greater than this value. The inclusion of variable velocity into considerations led to surprising
result that a great portion of the head echoes accelerated (3 possibly decelerating echoes in comparison with 33 accelerating
cases on the level of relative standard deviations of output parameters not exceeding 10%). It seems that the allocation of
the ionization responsible for the head echo is not entirely identical with the instantaneous meteoroid position. As a consequence,
the velocity derived from the measured head echo coordinates can differ from the velocity of parent body. We are not able
to explain this finding at present.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
We present a new Very Large Array (VLA) image of Saturn, made from data taken in October 1998 at a wavelength of λ3.6 cm. The moderate ring opening angle (B≈15°) allows us to explore direct transmission of microwave photons through the A and C rings. We find a strong asymmetry of photons transmitted through the A ring, but not in the C ring, a new diagnostic of wake structure in the ring particles. We also find a weak asymmetry between east and west for the far side of the ansae. To facilitate quantitative comparison between dynamic models of the A ring and radio observations, we extend our Monte Carlo radiative transfer code (described in Dunn et al., 2002, Icarus 160, 132-160) to include idealized wakes. We show the idealized model can reproduce the properties of dynamic simulations in directly transmitted light. We examine the model behavior in directly transmitted and scattered light over a range of physical and geometric wake parameters. Finally, we present a wake model with a plausible set of physical parameters that quantitatively reproduces the observed intensity and asymmetry of the A ring both across the planet and in the ansae. 相似文献
Since Cassini arrived at Saturn in 2004, its moon Titan has been thoroughly mapped by the RADAR instrument at 2-cm wavelength, in both active and passive modes. Some regions on Titan, including Xanadu and various bright hummocky bright terrains, contain surfaces that are among the most radar-bright encountered in the Solar System. This high brightness has been generally attributed to volume scattering processes in the inhomogeneous, low-loss medium expected for a cold, icy satellite surface. We can test this assumption now that the emissivity has been obtained from the concurrent radiometric measurements for nearly all the surface, with unprecedented accuracy (Janssen et al., and the Cassini RADAR Team [2009]. Icarus 200, 222-239). Kirchhoff’s law of thermal radiation relates the radar and radiometric properties in a way that has never been fully exploited. In this paper we examine here how this law may be applied in this case to better understand the nature of Titan’s radar-bright regions. We develop a quantitative model that, when compared to the observational data, allows us to conclude that either the reflective characteristics of the putative volume scattering subsurface must be highly constrained, or, more likely, organized structure on or in the surface is present that enhances the backscatter. 相似文献
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics. 相似文献
Vertical profiles of sound speed in the sea can be measured by using laser excited Brillouin scattering. In this paper the dependence of the accuracy of sound speed measurement on the accuracy of the Brillouin shift measurement is analyzed. We calculated the maximum detecting depths of sound speed to an accuracy of 1 m/s by lidar with different laser pulse energy, platform altitude, telescope aperture and lidar effective attenuation coefficient. The estimation of sounding ability in the East China Sea is made in some stations. These data can be used in the design of Brillouin Lidar for the China Sea. 相似文献