首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   49篇
  国内免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   198篇
地质学   8篇
海洋学   2篇
综合类   2篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   12篇
  2017年   8篇
  2016年   11篇
  2015年   7篇
  2014年   13篇
  2013年   14篇
  2012年   9篇
  2011年   9篇
  2010年   9篇
  2009年   14篇
  2008年   15篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  1999年   4篇
  1997年   3篇
  1996年   2篇
  1993年   1篇
  1987年   1篇
排序方式: 共有215条查询结果,搜索用时 31 毫秒
11.
郭玉荣    叶哲谦 《世界地震工程》2022,38(3):070-77
离线模型更新混合试验对构件拟静力数据进行恢复力模型参数识别,并更新数值子结构中相应构件的模型参数来提高混合试验精度,但该方法尚缺少真实试验的验证。本文基于课题组开展的足尺RC柱拟静力试验,取恢复力模型为集中塑性铰Ibarra-Medina-Krawinkler(IMK)模型,进行框架结构离线模型更新混合试验研究。结果表明,当物理子结构取为RC足尺柱时,离线模型更新混合试验能获得接近于真实试验情况下结构的地震响应,从而对该方法的有效性进行了试验验证。利用IMK经验公式,将真实试验模型参数识别值按轴压比进行对照修正,应用于不同层数的框架结构地震响应模拟,实现了试验数据的重复利用。  相似文献   
12.
Conventional RC/TS (resonant column and torsional shear) devices use a specimen with an aspect ratio (height-to-diameter) of 2:1 and this generates a maximum shear strain in the sample of about 1.5% at the maximum rotation of the driving system. The objective of this study is to modify the RC/TS device to generate higher strain amplitude. The modifications include a new base pedestal to overcome the limitations in the travel of the drive system and modification of the coil wiring to increase torque. The effects of the new coil wire on torque in the electromagnetic drive system were evaluated and the application of the modified device was illustrated using sand soil.  相似文献   
13.
Irregular reinforced concrete (RC) buildings constitute a significant portion of the existing housing stock. A common type of irregularity is in the form of discontinuity in the vertical framing elements, which can exacerbate their seismic vulnerability. The design guidelines available in seismic design codes essentially cater to only regular buildings, and the safety of such buildings, even when the other guidelines of the codes are followed, is doubtful. This article evaluates the vulnerability of RC frame buildings with discontinuity in columns designed for modern seismic codes, in the form of seismic collapse capacity, collapse resistance against maximum earthquake demand level, and failure mechanism. The adequacy and limitations of the provisions of the seismic design codes are evaluated for such buildings. Analysis results show that the sequential analysis of buildings considering the construction staged effects, considerably affects the design and hence the collapse failure mechanism of even low- and mid-rise buildings. The results also underline the importance of strong column–weak beam design in the seismic performance of the floating column buildings. The vertical component of ground motion is also observed to be relatively more crucial in floating column buildings.  相似文献   
14.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   
15.
A novel low-cost friction sliding system for bidirectional excitation is developed to improve the seismic performance of reinforced concrete (RC) bridge piers. The sliding system is a spherical prototype developed by combining a central flat surface with an inclined spherical segment, characterized by stable oscillation and a large reduction in response accelerations on the flat surface. The inclined part provides a restoring force that limits the residual displacements of the system. Conventional steel and concrete are employed to construct a flat-inclined spherical surface atop an RC pier. The seismic forces are dissipated through the frictions generated during the sliding movements; hence, the seismic resilience of bridges can be ensured with a low-cost design solution. The proposed system is fabricated utilizing a mold created by a three-dimensional printer, which facilitates the use of conventional concrete to construct spherical shapes. The concrete surface is lubricated with a resin material to prevent abrasion from multiple input ground motions. To demonstrate the effectiveness of the system, bidirectional shaking table tests are conducted in the longitudinal and transverse directions of a scaled bridge model. The effect of the inclination angle and the flat surface size is investigated. The results demonstrate a large decrease in response acceleration when the system exhibits circular sliding displacement. Furthermore, the inclination angle that generates the smallest residual displacement is identified experimentally.  相似文献   
16.
Reinforced concrete (RC) precast shear walls are extensively applied in practical engineering, owing to their fast construction speed. However, because of the transport conditions, RC precast shear walls have to be separated into small wall segments during the factory prefabrication procedure before being assembled on site. Typically, wet-type jointing methods are adopted to link the segments, which is time-consuming and results in unreliable post-pouring area strength. To overcome this problem, the novel scheme of the steel shear key (SSK) featuring steel shear panels and combined fillet and plug welding is proposed. Three RC precast shear wall specimens with different linking strength, termed as weakened SSK wall, standard SSK wall, and strengthened SSK wall, respectively, and an integrated shear wall specimen were designed. Quasi-static cyclic loading was applied to investigate the specimens' dynamic properties. The test results suggest the prefabricated wall segments equipped with SSKs showed reliable stiffness and bearing capacity and were improved in energy dissipation ability, compared with conventional shear walls. As the shear stiffness and number of equipped SSKs increased, the specimens exhibited higher strength, but their ductility and energy dissipation were slightly decreased. Most importantly, the standard SSK wall specimen could achieve satisfactory bearing capacity and deformability and is thus recommended for precast building structures. Finite element method (FEM) models were established to validate the test results, and parametric study analysis was conducted based on the coupling ratio of the SSK walls. Finally, an appropriate coupling ratio range is recommended for practical engineering applications.  相似文献   
17.
Mid‐rise to high‐rise buildings in seismic areas are often braced by slender reinforced concrete (RC) walls, which are interconnected by RC floor diaphragms. In design, it is typically assumed that the lateral forces are distributed in proportion to the wall's elastic stiffness. Pushover analyses of systems comprising walls of different lengths have, however, shown that large compatibility forces can develop between them, which should be considered in design, but the analyses have also shown that the magnitude of the computed forces is very sensitive to the modelling assumptions. Using the results of a complex shell element model as benchmark, different simple hand‐calculation methods and inelastic beam element models are assessed and improved to yield reliable estimates of the base shear distribution among the individual walls comprising the interconnected wall system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
18.
Soil liquefaction induced by earthquakes frequently cause costly damage to pile foundations. However, various aspects of the dynamic behavior and failure mechanisms of piles in liquefiable soils still remain unclear. This paper presents a shake-table experiment conducted to investigate the dynamic behavior of a reinforced-concrete (RC) elevated cap pile foundation during (and prior to) soil liquefaction. Particular attention was paid to the failure mechanism of the piles during a strong shaking event. The experimental results indicate that decreasing the frequency and increasing the amplitude of earthquake excitation increased the pile bending moment as well as the speed of the excess pore pressure buildup in the free-field. The critical pile failure mode in the conducted testing configuration was found to be of the bending type, which was also confirmed by a representative nonlinear numerical model of the RC pile. The experimental results of this study can be used to calibrate numerical models and provide insights on seismic pile analysis and design.  相似文献   
19.
Most current seismic design includes the nonlinear response of a structure through a response reduction factor(R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modern seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual ‘R' value for engineered design/construction of reinforced concrete(RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.  相似文献   
20.
本文首先对等效框架模型、多竖直杆单元模型作了改进.然后应用改进等效框架模型、改进多竖直杆单元模型及分层壳单元模型,对不同轴压比的三片剪力墙构件模型与一个14层筒中筒结构模型进行了计算分析,并与实验结果作了比较.结果表明:改进多竖直杆单元模型在所有情况下均可取得较好结果,是适用性较强的剪力墙非线性单元模型;多层壳单元模型...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号