首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   379篇
  国内免费   468篇
测绘学   51篇
大气科学   157篇
地球物理   436篇
地质学   1099篇
海洋学   16篇
天文学   2篇
综合类   146篇
自然地理   286篇
  2024年   4篇
  2023年   27篇
  2022年   65篇
  2021年   85篇
  2020年   55篇
  2019年   76篇
  2018年   60篇
  2017年   71篇
  2016年   47篇
  2015年   43篇
  2014年   79篇
  2013年   93篇
  2012年   72篇
  2011年   86篇
  2010年   80篇
  2009年   114篇
  2008年   98篇
  2007年   137篇
  2006年   158篇
  2005年   104篇
  2004年   110篇
  2003年   95篇
  2002年   73篇
  2001年   57篇
  2000年   90篇
  1999年   33篇
  1998年   36篇
  1997年   38篇
  1996年   26篇
  1995年   19篇
  1994年   15篇
  1993年   10篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1979年   3篇
  1954年   5篇
排序方式: 共有2193条查询结果,搜索用时 15 毫秒
61.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   
62.
基于GIPL2模型的青藏高原活动层土壤热状况模拟研究   总被引:5,自引:5,他引:0  
青藏高原活动层土壤热状况,对深入了解高原活动层的厚度变化特征、下垫面的热力作用以及对气候变化预测均有重要意义。利用GIPL2模型模拟青藏高原多年冻土区不同植被状况下活动层土壤热状况。模拟结果表明:模型在高寒草原(QT06)试验点模拟效果较好,高寒沼泽草甸(QT03)试验点的模拟效果较差,高寒草甸(QT01)、高寒荒漠草原(QT05)和高寒草原化草甸(QT04)试验点的模拟效果介于高寒草原试验点和高寒沼泽草甸试验点之间。QT01、QT03、QT04、QT05和QT06的土壤温度模拟值与观测值相比,均方根误差分别为0.67、1.29、0.73、0.7和0.56℃;相关系数分别为0.99、0.87、0.98、0.98和0.96;平均误差分别为0.37、0.61、0.31、0.45和0.16℃。QT06模拟结果较好,原因在于此点土壤质地变化不大,模型的分层与所取的参数更加接近此点的实际状况。QT03模拟结果较差,可能由于此地区土壤中存在砾石,在导热率参数化方案中没有考虑砾石含量,导致模拟结果偏差较大。总体而言,GIPL2模型对青藏高原活动层土壤热状况的模拟具有一定的优势,是一种模拟多年冻土区活动层土壤热状况较为理想的模型。  相似文献   
63.
青藏铁路路基创造性采用了主动冷却路基的设计理念修建而成,目前铁路已经安全运营超过10年。青藏铁路路基修筑在多年冻土之上,路基下部冻土温度变化是衡量路基是否稳定的关键因素。基于长期(2008—2019年)地温观测资料,对昆仑山垭口南坡青藏铁路K980+000低温多年冻土区块石路基坡脚至坡脚外30 m范围内的冻土上限变化、年际地温变化、季节性地温变化进行分析,研究了路基工程行为对低温多年冻土的长期影响机制。结果表明:冻土地温不断升高,冻土上限逐年下移;与天然孔比较,路基坡脚处地温增温幅度反而较小,主要可能受块石路基冷却效应的影响;冷季与暖季呈现出不对称的增温趋势。冻土路基普遍增温的趋势仍然存在,出于对多年冻土的保护与保证工程稳定性的考虑,应尽量采用冷却路基的思想修建路基。同时,应加强对路基的监测,分析长期增温过程后路基稳定性变化,并对路基下部冻土的变化做出定量研究。  相似文献   
64.
青藏高原东缘构造演化的SHRIMP锆石U-Pb年代学框架   总被引:6,自引:2,他引:4  
青藏高原东缘一直被普遍认为是一个吸收印度—欧亚大陆碰撞变形的调节带。本文所获得的最新SHRIMP锆石U-Pb测年结果显示:青藏高原东缘具有更加复杂的地质历史。测年结果表明,高原东缘最古老的前寒武纪结晶基底形成于古元古代(2401~1912Ma)。这一古老基底首先受到中元古代构造热事件(1361~1040Ma)的影响,随后受到新元古代与弧岩浆活动有关构造热事件(791~817Ma)的强烈改造。松潘—甘孜复理石杂岩的基底是亲洋壳型的,形成于晚新元古代的大陆裂解作用(681~655Ma)。高原东缘的前寒武纪微地块可能是由这次裂解作用从扬子或青藏地块拉裂出去形成的。这些微陆块先增生拼贴于东冈瓦纳大陆、然后又从中裂离,并最终卷入高原东缘的特提斯构造演化过程中。伴随东冈瓦纳大陆裂解,高原东缘古特提斯洋于石炭纪至二叠纪早期拉开(328~292Ma),经早中生代弧-陆碰撞作用闭合(224~213Ma)。中侏罗世这一地区发育显著的构造岩浆活动(175Ma),但其动力学背景仍不十分清楚。晚白垩世岩浆活动(97Ma)可能是印度板块初始俯冲阶段的产物。新生代岩浆作用(18Ma)与陆-陆碰导致的大规模走滑断层作用所引起的同熔作用有关。  相似文献   
65.
青藏高原东北缘地壳三维速度结构   总被引:18,自引:6,他引:12       下载免费PDF全文
本文用1980—2000年M≥1.5的2 032个天然地震事件的38 052个〖AKP-〗、〖AKS-〗、Pm、Sm、Pn和Sn震相到时及人工地震测深给出的Moho面形态资料,利用地震层析技术反演了32°~40°N, 100°~108°E区域内地壳地震波速度结构.从层析成像图象中可以得到,本区的地壳可分成4个层位.第1层(埋深约在0~3 km)为沉积层, 速度梯度约为0.2 s-1;第2层(埋深约在3~17 km)为上地壳, 其顶部速度梯度约为0.1 s-1, 下部速度横向变化较大且存在低速块体;第3层(埋深约在17~36 km)为中地壳, 速度梯度约为0.03 s-1;第4层(埋深约在36 km—Moho)为下地壳, 是一个契形层,总的趋势是西厚东薄,青藏高原较厚逐渐向鄂尔多斯地块和扬子准地台方向变薄,各处的地震波速度梯度不尽相同.  相似文献   
66.
四川丹巴穹状变质地体   总被引:1,自引:0,他引:1  
四川西部丹巴地区最为引人注目的地质构造是穹状变质地体的发育。华北、扬子和羌塘三个板块之间的南北向和东西向双向收缩,引起区内发育了大小不等的十几个穹状变质地体,自北而南有马奈、春牛场、丹巴、公差、格宗等变质穹隆。多数穹隆的核部出露的是前寒武纪的片麻岩和混合岩,例如春牛场侵入体。其中的片麻岩原岩、黑云母和角闪石质片麻岩均属本区最老的岩石。它不整合于志留纪地层之下,年代学研究证明其年代属新元古代(大约865~785Ma)。混合岩从形态上说,多为条带状,偶见角砾状的角闪石质混合岩。但是也有不少穹隆,核部是花岗岩类。岩石化学研究证明,它们大多属于S型花岗岩,仅个别为I型。穹状变质地体的外围变质带可分三类:(1)巴罗带型区域递增变质带,有的显示变质带的倒转;(2)巴肯型变质带;(3)低级区域变质带,多数是中压绿片岩相。巴罗带变质的泥质岩,多数变晶矿物如黑云母、十字石、石榴石均具早期低级变质矿物的定向包裹物,显示明显叠加变质的信息。变质泥质岩的∑REE=(195~274)×10-6,(La/Yb)n=0·811~1·917。稀土配分曲线和微量元素蛛网图具Nb、P、Ti负异常,显示大陆地壳的特征,是陆缘碎屑物质区域变质产物。巴肯带出露于丹巴以北,主要变质泥质岩是夕线石片麻岩类,常见铁铝榴石而少见堇青石,说明原岩富铁贫镁,局部出现锌铁尖晶石。由北侧的巴肯带到巴罗型变质的公差穹隆到南部的格宗穹隆变质带是从高温到低温连续变化的。因之,我们倾向于认为松潘—甘孜造山带的东南缘是一个规模较大的、呈NE向分布的低—中压区域变质带,总体是一条热轴,垂直走向,向东南温度逐步降低。据前人同位素年龄资料:M1巴罗型区域变质发生于约210~205Ma,马奈花岗岩U-Pb锆石年龄为(197±6)Ma。M2巴肯型变质与岩体侵入有关,年龄约为164Ma。M3喜马拉雅期重结晶的黑云母年龄约为30Ma。总之,丹巴变质穹隆的形成是青藏高原东北部地质构造演化中重要的一幕,其主要活动期起于印支晚期最后结束于喜马拉雅期的隆升和挤出。依据低压高温变质带的空间分布,推测本区印支末期存在一NE向的热轴,同时也是S型花岗岩体的出露区。至于木里一带穹隆与丹巴穹隆在变质程度上的差异,应当归因于印支晚期的陆壳增厚过程中,北倾南倒逆冲剪切造成区域热流的不均一性。也说明了青藏高原东北缘在喜山期隆升之前具有复杂的构造变质历史。  相似文献   
67.
青藏高原新生代形成演化的整合模型——来自火成岩的约束   总被引:36,自引:8,他引:28  
深部过程是青藏高原演化的主导因素,其他地质过程都可以看作是对深部过程的响应。因此,一个构造旋回(阶段)的地球动力学事件链可以概括为深部地质过程—幔源岩浆活动—壳源岩浆活动—陆壳增厚—地表隆升—表层剥蚀与沉积,其中幔源岩浆活动的研究成为追索青藏高原演化历史的关键环节。据此,青藏高原演化的关键性时间坐标为80、45、27、17、9和4Ma。青藏高原新生代火成岩具有三种展布形式:与雅鲁藏布缝合带平行的岩浆带、沿深大断裂展布的岩浆带和藏北离散性岩浆分布区,它们分别受控于大陆碰撞、大规模走滑和岩石圈拆沉构造体制,且都受控于印度—亚洲软流圈汇聚过程。据此,文中提出了一个描述青藏高原演化的整合模型:南北向地幔对流汇聚控制了岩石圈块体的相对运动,并最终导致印度—亚洲大陆的碰撞和沿碰撞带的大规模岩浆活动;碰撞之初(白垩纪末期),大陆岩石圈块体的刚性属性有利于应力的远程传递和块体旋转,沿块体边界分布的大型走滑断裂控制了岩浆活动的发生;随着挤压过程的持续进行,岩石圈块体的受热和变形,高原岩石圈的重力不稳定性增加,最终导致拆沉作用和软流圈物质的大规模上涌以及藏北高原的离散性岩浆活动。在高原演化中,岩石圈拆沉作用具有重要意义,许多地质事件的发生都与此有关。同时,软流圈的汇聚还导致软流圈物质的向东挤出,并因此造成青藏高原岩石圈的向东挤出和晚新生代的伸展构造。  相似文献   
68.
阿尔金断裂带对青藏高原北部生长、隆升的制约   总被引:62,自引:3,他引:59  
大量的同位素年代学证据表明(古)阿尔金断裂带可能形成于三叠纪,后又经历了侏罗纪、白垩纪的强烈左旋走滑活动,自印度板块与欧亚大陆碰撞后阿尔金断裂再次活动。主要的走滑活动发生在:(1)245~220Ma;(2)180~140Ma;(3)120~100Ma;(4)90~80Ma;(5)60~45Ma;(6)渐新世至中新世;(7)上新世至更新世以及(8)全新世。沿阿尔金断裂带,伴随左旋走滑活动形成一系列的逆冲断裂和正断裂,反映走滑过程中伴随隆升作用的存在,并且形成自北向南包括祁连山、大雪山、党河南山、柴北缘山、祁漫塔格山和昆仑山,表明阿尔金断裂带制约着青藏高原北部的生长和隆升。阿尔金断裂带东、西两端的白垩纪和新生代火山活动是断裂走滑活动的响应。  相似文献   
69.
青藏高原多期次隆升的环境效应   总被引:28,自引:0,他引:28  
青藏高原隆升对中国西部环境变迁起着决定性影响。通过对柴达木、吐鲁番—哈密、塔里木盆地的演化及其与青藏高原隆升的耦合研究,以柴达木盆地为时空坐标,认为高原隆升可分为三大阶段:(1)古近纪期间青藏高原隆升仅限于冈底斯山一带。当时,受行星纬向气候带控制,中国西北地区为干旱亚热带草原和热带雨林环境,大面积准平原化、泛盆地化,在构造上处于伸展-夷平的拉张环境,与现今亚洲大陆东部相似;(2)青藏高原整体的初次隆升发生在中新世早—中期(23~11·7Ma)。因青藏高原和大兴安岭的阻隔,古近纪的纬向气候带逐渐转变为中亚季候风,古黄土(22Ma)、三趾马动物群的发育,说明高原北缘当时为干旱的荒漠草原环境。同时,这次隆升引起中—晚中新世中国西部广袤地域古地形-构造面貌的变化;(3)形成现今高原面貌的末次快速隆升发生在0·9~0·8Ma。早更新世晚期,印度洋快速扩张,印度板块向中亚大陆脉冲式(A型)陆内俯冲,使得高原快速挤压隆升。这次隆升不仅使高原本身的环境骤变,出现第四纪以来最大的冰川,形成世界上最大的高寒草原,而且引起了全球气候的变化,促使北极圈冰盖的形成。同时,高原隆升使高原内部和周边出现强烈的挤压构造变形,如柴达木、河西走廊、塔里木、吐鲁番—哈密、准噶尔等诸盆地内几万米厚度中—新生界的构造变形与昆仑山、祁连山、天山、阿尔泰山的挤出式双向推覆隆升,形成了中国西北的盆-山地貌。现今,随着青藏高原的持续隆升,高寒草原开始退化,造成中国西北地区大面积的荒漠化,成为制约我国西部生态环境的重要因素。  相似文献   
70.
郭增建  韩延本 《地震研究》2006,29(3):300-303
介绍了块、带、源观点的产生和不断完善的过程,以及最新的相关研究成果。根据块、带、源观点,将青藏高原巨块划分为南块和北块,并讨论了北块边界上大震的活动性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号