首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   178篇
  国内免费   459篇
测绘学   2篇
地球物理   72篇
地质学   1056篇
海洋学   5篇
综合类   7篇
自然地理   9篇
  2024年   8篇
  2023年   22篇
  2022年   28篇
  2021年   28篇
  2020年   41篇
  2019年   33篇
  2018年   41篇
  2017年   44篇
  2016年   38篇
  2015年   50篇
  2014年   59篇
  2013年   61篇
  2012年   65篇
  2011年   30篇
  2010年   42篇
  2009年   81篇
  2008年   57篇
  2007年   61篇
  2006年   69篇
  2005年   29篇
  2004年   32篇
  2003年   34篇
  2002年   19篇
  2001年   20篇
  2000年   51篇
  1999年   16篇
  1998年   10篇
  1997年   13篇
  1996年   14篇
  1995年   9篇
  1994年   12篇
  1993年   16篇
  1992年   7篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1954年   1篇
排序方式: 共有1151条查询结果,搜索用时 0 毫秒
41.
羌塘盆地白垩系海相油页岩特征及其形成条件分析   总被引:2,自引:0,他引:2  
近年来,在羌塘盆地胜利河、长梁山、长蛇山、托纳木等地发现的油页岩为目前我国规模最大的海相油页岩矿床,具有重要的工业开采价值。海相油页岩的主要矿物成分为碳酸盐、粘土矿物和石英,并见有黄铁矿、石膏、菱镁矿等矿物。粘土矿物以伊利石为主,少量高岭石,不含蒙脱石。有机地球化学分析表明,这些油页岩的有机质丰度较高,有机质类型较好。胜利河油页岩TOC含量在4.31%~21.37%之间,均值为8.40%;托纳木油页岩的TOC含量也较高,最大值为25.68%,平均为9.32%;长梁山剖面油页岩的TOC含量在2.96%~23.47%之间,平均值为9.56%;长蛇山油页岩的TOC含量在4.53%~9.49%之间,平均值为7.74%。长蛇山油页岩干酪根类型主要为Ⅱ1型,少数为Ⅱ2和Ⅲ型;胜利河油页岩主要为Ⅱ1和Ⅱ2型干酪根,而托纳木油页岩的干酪根类型主要为Ⅱ1型和Ⅰ型。白垩系海相油页岩的形成受多方面因素控制,包括缺氧富氧状态、古生产力、古气候、粘土矿物的混积作用、古地形条件以及海平面变化等。其中,油页岩的总有机碳含量(TOC)与古环境元素指标Mo、V存在较强的相关关系,相关系数分别为0.975和0.917,而与古生产力指标P/Ti、Ba/Al之间为弱相关或无相关关系,相关系数分别为0.481和-0.739。因此,本文认为海相油页岩的形成以"保存模式"为主,有机质沉积时的水体环境对高有机质含量的油页岩的形成起主导作用,并在此基础上建立了海相油页岩的形成演化模式。  相似文献   
42.
柴北缘牦牛山地区牦牛山组沉积相组合特征   总被引:5,自引:0,他引:5  
柴达木盆地北缘牦牛山地区出露的牦牛山组是一套由冲积扇和扇三角洲相共同构成的陆相沉积组合,冲积扇相砾岩-粗砂岩组合主要分布于研究区SE侧,扇三角洲相砂岩-泥岩组合主要分布于研究区NW侧。古水流分析表明牦牛山组沉积物主要来自其SE侧古隆起,但后期扇三角洲相包含少量来自NW和NE向的沉积物。该套沉积组合序列特征与区域上分布在牦牛山西侧同时期形成的湖泊相、滨浅海相沉积共同表明,柴达木盆地北缘在晚志留-早泥盆世时期存在一NW向倾斜的古斜坡,且晚期北侧发生抬升。砾岩和砂岩碎屑组成与区域岩石组合类型对比表明,牦牛山组沉积碎屑物主要来自于滩间山群。沉积组合序列特征、碎屑组成和区域构造背景综合研究表明,牦牛山组可能为柴达木板块向北俯冲过程中形成的局部断陷盆地的充填物。  相似文献   
43.
The Dulan eclogite–gneiss region is located in the eastern part of the North Qaidam eclogite belt, NW China. Widespread evidence demonstrates that this region is a typical ultrahigh-pressure (UHP) metamorphic terrane. Eclogites occur as lenses or layers in both granitic and pelitic gneisses. Two distinguished sub-belts can be recognized and differ in mineralogy, petrology and geochemistry. The North Dulan Belt (NDB) has tholeiitic protoliths with high TiO2 and lower Al2O3 and MgO contents. REE patterns and trace element contents resemble those of N-type and E-type MORB. In contrast, eclogites in the South Dulan Belt (SDB) are of island arc protoliths with low TiO2, high Al2O3 and show LREE-enriched and HFSE-depleted patterns. Sm–Nd isotope analyses give isochron ages of 458–497 Ma for eclogite-facies metamorphism for the two sub-belts. The ages are similar to those of Yuka and Altun eclogites in the western extension of the North Qaidam-Altun eclogite belt. The Dulan UHP metamorphic terrane, together with several other recently recognized eclogite-bearing terrenes within the North Qaidam-Altun HP-UHP belt, constitute the key to the understanding of the tectonic evolution of the northern Tibetan Plateau. The entire UHP belt extends for more than 1000 km from the Dulan UHP terrane in the southeast to the Altun eclogite–gneiss terrane in the west. This super-belt marks an early Paleozoic continental collision zone between the Qaidam Massif and the Qilian Massif.  相似文献   
44.
45.
东亚大陆边缘的构造格架及其中-新生代演化   总被引:10,自引:0,他引:10  
燕山运动在亚洲大陆雏形东缘形成2条北东向的剪切带:郯庐断裂带和长乐-南澳-中央构造线断裂带,晚侏罗世—古近纪早期沿之发生地体/地块的拼贴。系统叙述了各移置地体/地块的主要岩石记录和拼贴时代,据起源分为3类:异地的(包括源自冈瓦纳的和源自盘古大洋的)、半异地的和准原地的;据拼贴位置分为2组:拼贴后基本位于原地的(日本海张开以前) 和发生过向北东错移的。新生代内东亚大陆边缘发生解体,可以台湾岛以北的菲律宾海盆断裂为界将东亚大陆边缘弧分为2段,北段仍处于剪切-拉张中,南段已进入剪切挤压-造山阶段。强调该地区中—新生代演化经历了2个里丁旋回, 形成早白垩世的北东向和新近纪的北东东向2期新生构造。  相似文献   
46.
在果干加年山的主脊及其以北识别出一套稳定的沉积岩系,角度不整合于蛇绿混杂岩之上,以细砂岩、硅质粉砂岩为主,其中夹有大小不等的古生代外来岩块,底砾岩成分因地而异并具有快速堆积的特点,底部夹有流纹岩。厚度大于1633m。流纹岩夹层获得的锆石SHRIMPU-Pb谐和年龄为214Ma±4Ma,时代为晚三叠世诺利期。在剖面测制和区域对比的基础上建立了上三叠统望湖岭组,代表龙木错-双湖缝合带闭合以后接受的最早的沉积盖层。望湖岭组之下的蛇绿混杂岩获得阳起石Ar-Ar年龄219.7Ma±6.5Ma。同位素定年确定构造转化事件发生在214~220Ma之间,为龙木错-双湖缝合带的闭合时间提供了确切的时间约束,望湖岭组是这一事件的沉积记录,是龙木错-双湖缝合带蛇绿混杂岩之上首次发现的沉积盖层。  相似文献   
47.
The results of the study of heavy clastic minerals from the Cretaceous-Paleogene terrigenous complexes of Sikhote-Alin and Kamchatka, as well as from the Cenozoic sediments of the deepwater Vanuatu Trench, are summarized. The data obtained have been interpreted on the basis of their comparison with heavy mineral assemblages of recent sediments deposited in known geodynamic settings. It is shown that the heavy clastic minerals of sedimentary rocks, their relative quantities, and chemical compositions may serve as reliable indicators of different island-arc settings and magmatic processes; these indicators may also be used for identification of such settings in paleobasins of orogenic regions.  相似文献   
48.
The Jinping terrane is situated in the southern segment of the Ailaoshan ore belt, Sanjiang Tethyan Orogen (SW China). The Paleogene intrusions in Jinping consist of syenite porphyry, fine-grained syenite and biotite granite stocks/dikes, and contain relatively low TiO2 (0.21–0.38 wt%), P2O5 (0.01–0.35 wt%), and high Na2O (2.00–4.62 wt%) and K2O (4.48–7.06 wt%), belonging to high-K alkaline series. Paleogene gold mineralization in Jinping comprises four genetic types, i.e., orogenic, alkali-rich intrusion-related, porphyry and supergene laterite. The NW–NNW-trending faults and their subsidiaries are the major ore-controlling structures. The orogenic Au mineralization, dominated by polymetallic sulfide-quartz veins, occurs in the diorite and minor in Silurian-Devonian sedimentary rocks. It contains a CO2-rich mesothermal fluid system generated from the mixing of mantle-derived fluids with crustal-derived metamorphic fluids, and the ore-forming materials were upper crustal- or orogenic-derived. The alkali-rich intrusion-related Au mineralization is hosted in the Ordovician-Silurian sedimentary rocks and minor in the Paleogene alkaline intrusions, and the Au orebodies occur predominantly in the alteration halos. It contains a CO2-bearing, largely metamorphic-sourced mesothermal fluid system, and the ore-forming materials were derived from the ore-hosting rocks and minor from the alkali-rich intrusions. The porphyry Cu-Mo-Au mineralization occurs in the granite/syenite porphyries and/or along their contact skarn, with the mineralizing fluids being magmatic-hydrothermal in origin. The former two hypogene Au mineralization types in Jinping were mainly formed in the late Eocene (ca. 34–33 Ma) and slightly after the porphyry Cu-Mo-Au mineralization (ca. 35–34 Ma), which is coeval with the regional Himalayan orogenic event. Subsequent weathering produced the laterite Au mineralization above or near the hypogene Au orebodies.  相似文献   
49.
Tibet consists of several terranes that progressively collided with the southern margin of Asia during the Mesozoic following the closure of intervening ocean basins. This Mesozoic amalgamation history, as well as the extent to which it may have contributed to crustal thickening prior to the Cenozoic Indo‐Asia collision, remains poorly constrained and strongly debated. Here, we present a metamorphic petrological and U‐Pb zircon geochronological study of the Amdo metamorphic complex, one of the few exposures of high‐grade metamorphic rocks in central Tibet, located along the Bangong suture between the Qiangtang terrane to the north and the Lhasa terrane to the south. U‐Pb ages of metamorphic zircon in gneiss constrain the timing of peak metamorphism at c. 178 Ma, prior to the Early Cretaceous collision between the two terranes. Peak P–T conditions of gneiss within the metamorphic complex are constrained by conventional as well as multi‐equilibrium (THERMOCALC v.3.21 and v.3.33) geothermobarometry of two samples of garnet‐amphibolite. Whereas THERMOCALC v.3.21 yields similar results as conventional geothermobarometry, THERMOCALC v. 3.33 yields dramatically lower pressures, mostly due to the change in the amphibole activity model used. Using THERMOCALC v.3.21, the two garnet‐amphibolite samples yield similar P–T conditions of 0.83 ± 0.06 GPa at 646 ± 33 °C and 0.97 ± 0.06 GPa at 704 ± 35 °C. Plagioclase coronas on the garnet‐amphibolite sample with lower peak P–T conditions indicate a period of isothermal decompression. Additional geothermometry on two garnet‐free amphibolites yielded similar temperatures of 700–750 °C and suggests similar P–T conditions across most of the complex. However, two exposures of garnet‐kyanite schist located along the southern edge of the metamorphic complex yielded slightly lower peak conditions of 0.75–0.85 GPa and 550–610 °C. Petrographic and field relations suggest the difference in metamorphic grade between the schist and gneiss is due to an intervening thrust fault. The existence of the thrust fault indicates that at least part of the exhumation of the complex was due to contractional deformation, possibly during the Lhasa‐Qiangtang collision. Our P–T–t results indicate the occurrence of a significant Early Jurassic tectonothermal event along the southern, active margin of the Qiangtang terrane that deeply buried the Amdo rocks. We suggest that the metamorphism is a result of arc‐related tectonism that may have been regionally extensive along the southern Qiangtang terrane; geological records of this tectonism may be rarely exposed along strike because of a lack of exhumation or subsequent depositional and structural burial.  相似文献   
50.
Based on the deformation characteristics of the ductile shear zones in Sumdo (松多) Group, the quartz fabric by EBSD (electron backscatter diffraction), the data of muscovite 40Ar-39Ar geochronology (220-230 Ma) from ductile shear zones and the zircon SHRIMP U-Pb chronology (190 Ma) of granites in Snmdo region, Lhasa (拉萨) terrane is thought to have experienced an important Indosinian orogenic event at 220-230 Ma, which caused the closure of the paleo-Tethys Ocean along the tectonic zone of eclogite and the collision between northern part and southern part of the Lhasa terrane. The zircon SHRIMP U-Pb chronology of 190 Ma for biotite adamellite, with the distributing characteristics of the granite massif intruding in Sumdo Group, indicates that the biotite adamellitc should be the late orogenic or post-orogenic granite resulting from the lndosinian orogenesis. The discovery of Indosinian orogenic belt in Lhasa terrane expansed the southern boundary of lndosinian orogenic belt in Qinghai (青海)-Tibet plateau to Lhasa terrane from Qiangtang (羌塘) terrane, which changed the understanding about the distribution of Indosinian orogenic belt in Qinghai-Tibet plateau and extended the "T" type lndosinian orogenic belt in China. The study is very important for the formation and distribution of paleo-Tethys Ocean in Tibet. The ancient terrane framework and evolution of Qinghai-Tibet plateau need further research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号