首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   36篇
  国内免费   46篇
测绘学   14篇
大气科学   28篇
地球物理   83篇
地质学   114篇
海洋学   90篇
天文学   5篇
综合类   16篇
自然地理   4篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   3篇
  2017年   10篇
  2016年   14篇
  2015年   17篇
  2014年   19篇
  2013年   14篇
  2012年   11篇
  2011年   21篇
  2010年   12篇
  2009年   14篇
  2008年   21篇
  2007年   15篇
  2006年   18篇
  2005年   17篇
  2004年   14篇
  2003年   9篇
  2002年   12篇
  2001年   14篇
  2000年   8篇
  1999年   17篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1978年   2篇
  1975年   1篇
  1954年   2篇
排序方式: 共有354条查询结果,搜索用时 15 毫秒
11.
螺旋泵可用来输送高粘性液体,该过程中由于液体的温度升高而粘度降低,因而其粘性耗散不能忽略。本文介绍一种上述情况下计算液体粘度、泵的功率和压力降的近似公式。  相似文献   
12.
For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation from piezocone test results. However, depending on assumptions and analytical techniques, it could vary considerably, even for a specific degree of consolidation. In this paper a method is proposed to determine a consistent coefficient of consolidation by applying the concept of an optimum design technique over all ranges of the degree of consolidation. Initial excess pore pressure distribution is assumed to be capable of being obtained by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of a two-dimensional linear-uncoupled axi-symmetric consolidation analysis. The minimization of differences between measured and predicted excess pore pressure was carried out by the BFGS unconstrained optimum design algorithm with a one-dimensional golden section search technique. By analyzing numerical examples and in-situ test results, it was found that the adopted optimum design technique gives consistent and convergent results.  相似文献   
13.
We use large-eddy simulation (LES) to study the turbulent pressure field in atmospheric boundary layers with free convection, forced convection, and stable stratification. We use the Poisson equation for pressure to represent the pressure field as the sum of mean-shear, turbulence–turbulence, subfilter-scale, Coriolis, and buoyancy contributions. We isolate these contributions and study them separately. We find that in the energy-containing range in the free-convection case the turbulence–turbulence pressure dominates over the entire boundary layer. That part dominates also up to midlayer in the forced-convection case; above that the mean-shear pressure dominates. In the stable case the mean-shear pressure dominates over the entire boundary layer.We find evidence of an inertial subrange in the pressure spectrum in the free and forced-convection cases; it is dominated by the turbulence–turbulence pressure and has a three-dimensional spectral constant of about 4.0. This agrees well with quasi-Gaussian predictions but is a factor of 2 less than recent results from direct numerical simulations at moderate Reynolds numbers. Measurements of the inertial subrange pressure spectral constant at high Reynolds numbers, which might now be possible, would be most useful.  相似文献   
14.
Experimental observations are reported of weakening of sediment-like aggregates by addition of hard particles. Sieved mixtures of calcite and halite grains are experimentally compacted in drained pressure cells in the presence of a saturated aqueous solution. The individual halite grains deform easily by pressure solution creep whereas calcite grains act as hard objects and resist compaction. The fastest rate of compaction of the mixed aggregate is not obtained for a 100% halite aggregate but for a content of halite grains between 45% and 75%. We propose that this unusual compaction behavior reflects the competition between two mechanisms at the grain scale: intergranular pressure solution at grain contacts and grain boundary healing between halite grains that prevent further compaction.  相似文献   
15.
The viscosity of synthetic peridotite liquid has been investigated at high pressures using in-situ falling sphere viscometry by combining a multi-anvil technique with synchrotron radiation. We used a newly designed capsule containing a small recessed reservoir outside of the hot spot of the heater, in which a viscosity marker sphere is embedded in a forsterite + enstatite mixture having a higher solidus temperature than the peridotite. This experimental setup prevents spheres from falling before a stable temperature above the liquidus is established and thus avoids difficulties in evaluating viscosities from velocities of spheres falling through a partially molten sample.

Experiments have been performed between 2.8 and 13 GPa at temperatures ranging from 2043 to 2523 K. Measured viscosities range from 0.019 (± 0.004) to 0.13 (± 0.02) Pa s. At constant temperature, viscosity increases with increasing pressure up to  8.5 GPa but then decreases between  8.5 and 13 GPa. The change in the pressure dependence of viscosity is likely associated with structural changes of the liquid that occur upon compression. By combining our results with recently published 0.1 MPa peridotite liquid viscosities [D.B. Dingwell, C. Courtial, D. Giordano, A. Nichols, Viscosity of peridotite liquid, Earth Planet. Sci. Lett. 226 (2004) 127–138.], the experimental data can be described by a non-Arrhenian, empirical Vogel-Fulcher-Tamman equation, which has been modified by adding a term to account for the observed pressure dependence of viscosity. This equation reproduces measured viscosities to within 0.08 log10-units on average. We use this model to calculate viscosities of a peridotitic magma ocean along a liquid adiabat to a depth of  400 km and discuss possible effects on viscosity at greater pressures and temperatures than experimentally investigated.  相似文献   

16.
We have used a first-principle approach based on the calculation of generalised stacking faults (GSF) to study the influence of pressure on the mechanical properties of forsterite. Six cases corresponding to [100] glide over (010), (021) and (001), and [001] glide over (100), (010) and (110) have been considered. The relaxed energy barriers associated with plastic shear have been calculated by constraining the Si atoms to move perpendicular to the fault plane and allowing Mg and O atoms to move in every direction. These conditions, which preserve dilations as a relaxation process, introduce Si–O tetrahedral tilting as an additional relaxation mechanism. Relaxed GSF show little plastic anisotropy of [100] glide over different planes and confirms that [001] glide is intrinsically easier than [100] glide. The GSF are affected by the application of a 10 GPa confining pressure with a different response for each slip system that cannot be explained by sole elastic effect. In particular, [100](010) is found to harden significantly under pressure compared to [001](010). Our results give the first theoretical framework to understand the pressure-induced change of dominant slip systems observed by Couvy et al. (in Eur J Mineral 16(6):877–889, 2004) and P. Raterron et al. (in GRL, submitted). It appears necessary to account for the influence of pressure on the mechanical properties of silicates in the context of the deep Earth.  相似文献   
17.
The Merensky Reef and the underlying Upper Group 2 chromitite layer, in the Critical Zone of the Bushveld Complex, host much of the world’s platinum-group element (PGE) mineralization. The genesis is still debated. A number of features of the Merensky Reef are not consistent with the hypotheses involving mixing of magmas. Uniform mixing between two magmas over an area of 150 by 300 km and a thickness of 3–30 km seems implausible. The Merensky Reef occurs at the interval where Main Zone magma is added, but the relative proportions of the PGE in the Merensky Reef are comparable to those of the Critical Zone magma. Mineral and isotopic evidence in certain profiles through the Merensky Unit suggest either mixing of minerals, not magmas, and in one case, the lack of any chemical evidence for the presence of the second magma. The absence of cumulus sulphides immediately above the Merensky Reef is not predicted by this model. An alternative model is proposed here that depends upon pressure changes, not chemical processes, to produce the mineralization in chromite-rich and sulphide-rich reefs. Magma was added at these levels, but did not mix. This addition caused a temporary increase in the pressure in the extant Critical Zone magma. Immiscible sulphide liquid and/or chromite formed. Sinking sulphide liquid and/or chromite scavenged PGE (as clusters, nanoparticles or platinum-group minerals) from the magma and accumulated at the floor. Rupturing of the roof resulted in a pressure decrease and a return to sulphur-undersaturation of the magma.  相似文献   
18.
阿克莫木气田目前已有多口井完钻,各井在钻揭白垩系砂岩储层前,对地层压力纵向上的变化规律认识不清,在什么层位及深度下7″套管意见仍不统一。本文根据目前研究现状和生产面临问题,对白垩系各组地层分布规律、压力特征进行了详细研究,认为白垩系克孜勒苏群、库克拜组分布稳定,压力窗口相近,白垩系东巴组与上覆古近系阿尔塔什组压力窗口相近。建议今后该区钻探7″套管应下至库克拜组顶部-东巴组底部,减少地层漏失和油气勘探风险。  相似文献   
19.
野外地质观察发现,在大陆地壳变质岩中可以广泛观察到围绕一个大的单晶或者硬质点的两端区域填充低粘度相物质形成的压力影。为了定量研究岩石材料中压力影的形成条件,本文利用高精度Paterson气体介质变形装置,对含有刚性球的圣卡罗橄榄石和洋中脊玄武岩(MORB)的混合物圆柱型样品进行了高温高压扭转变形试验。变形实验前样品的初始熔融均匀分布,比例为φ≈0.05,变形试件尺寸为D8.9mm×L5.5mm,内含8粒直径约1mm的刚性球。扭转变形试验温度为1473K,围压为300MPa,应变率为γ≈1×10~(-4)s~(-1),最大剪切变形为γ≈4。实验结果表明,岩石受到扭转力的作用产生变形之后,当局部剪切应变达到γ≈1时,可以在刚性球周围形成熔融富集带和熔融贫乏带,即压力影构造,围绕刚性球对称分布。由于熔融分布的不均一性,富集带熔融比例上升,最高可以达到φ_(high)=0.1~0.3,熔融贫乏带熔融比例下降,含量为φ_(low)=0.01~0.02。由于刚性球对其周围的压力分布的扰动区域大约为刚性球的尺度范围,因此,在离开刚性球一定距离后,熔融趋于均匀分布。  相似文献   
20.
High speed liquid jet and shockwave can be produced when a bubble collapses near a rigid wall, which may cause severe damage to solid structures. A hybrid algorithm was adopted to simulate bubble motion and associated pressures near a wall combining Level Set-Modified Ghost Fluid-Discontinuous Galerkin (LS-MGF-DG) method and boundary element method (BEM). Numerical results were compared with experimental data to validate the presented algorithm. Jet formation was simulated by BEM and the induced pressure on the wall was calculated with auxiliary function. The pressure at the point on the wall where the jet points to reaches its peak value after the jet penetrates the bubble. Bubble collapse and rebounding were simulated by the LS-MGF-DG method. Shock-wave is induced when the bubble collapse toroidally to a minimum volume and the pressure at wall center reaches the maximum due to shockwave superposition. A third pressure peak is found associated with the bubble rebounds and bubble splitting. In the case studied, a higher pressure was found due to collapse shockwave than bubble jet and affects a larger area of the wall. In addition, the three pressure peaks due to jet impact, collapse impact as well as bubble rebounding and splitting decrease with the increase of the standoff distance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号