首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   23篇
  国内免费   71篇
大气科学   1篇
地球物理   166篇
地质学   305篇
海洋学   23篇
天文学   2篇
综合类   3篇
自然地理   24篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   5篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   5篇
  2014年   11篇
  2013年   33篇
  2012年   22篇
  2011年   5篇
  2010年   6篇
  2009年   27篇
  2008年   46篇
  2007年   25篇
  2006年   33篇
  2005年   25篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   13篇
  2000年   20篇
  1999年   18篇
  1998年   19篇
  1997年   14篇
  1996年   15篇
  1995年   9篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有524条查询结果,搜索用时 750 毫秒
131.
Volcanic ash layers in North Pacific deep-sea sediment provide a record of episodic explosive volcanism in the Kamchatka–Kurile and Aleutian arcs over the past five million years. We counted 450 ash layers, determined layer thickness and cumulative ash thickness to quantify the flux of ash with time. We use this record to investigate the eruptive history of these arcs, test the reliability of the marine ash record, and inquire into the regional episodicity of North Pacific explosive volcanic history. Episodes of explosive volcanism occurred at approximately 0.2–0.5, 0.7–0.9, 1.5–1.7, and 2.5–2.65 Ma in the Kamchatka arc and 0.15–0.4, 1.7–1.8, 2.55–2.65, and at 3.0–3.1 Ma in the eastern Aleutian arc. These generally coeval eruptive episodes suggest that the pulses in explosive volcanism in the North Pacific enumerated here and recognized by others are regionally episodic over a wide portion of the Pacific rim and not just a response to local volcanogenic processes.  相似文献   
132.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   
133.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   
134.
Compositionally diverse dacitic magmas have erupted from Mount St Helens over the last 4000 years. Phase assemblages and their compositions in these dacites provide information about the composition of the pre-eruptive melt, the phases in equilibrium with that melt and the magmatic temperature. From this information pre-eruptive pressures and water fugacities of many of the dacites have been inferred. This was done by conducting hydrothermal experiments at 850°C and a range of pressures and water fugacities and combining the results with those from experiments at temperatures of 780 and 920°C, to cover the likely range in equilibration conditions of the dacites. Natural phase assemblages and compositions were compared with the experimental results to infer the most likely conditions for the magmas prior to eruption. Water contents disolved in the melts of the dacites were then estimated from the inferred conditions. Water contents in the dacites have varied greatly, from 3.7 to 6.5 wt.%, in the last 4000 years. Between 4000 and about 3000 years ago the dacites tended to be water saturated and contained 5.5 to 6.5 wt.% water. Since then, however, the dacites have been significantly water-undersaturated and contained less than 5.0 wt.% water. These dacites have tended to be hotter and more mafic, and andesitic and basaltic magmas have erupted. These changes can be explained by variable amounts of mixing between felsic dacite and basalt, to produce hotter, drier and more mafic dacites and andesites. The magma storage region of the dacitic magmas has also varied significantly during the 4000 years, with shifts to shallower levels in the crust occurring within very short time periods, possibly even two years. These shifts may be related to fracturing of overlying roof rock as a result of magma with-drawal during larger volume eruptions.  相似文献   
135.
郑祥身 《极地研究》1995,7(3):24-35
本文综合近年研究中新获得的资料和证据,对利文斯顿岛火山岩的地质特征和火山作用特点作了综合性的介绍。百耳斯建造是该岛最老的火山岩地层,由晚侏罗世至早白垩世生成的玄武岩、玄武安山岩质熔岩和火山碎屑岩、集块岩以及泥岩、页岩等组成,分布在岛西部的百耳斯半岛。中白垩世的鲍勒斯山组主要出露在岛的中部,是由安山岩质熔岩和火山碎屑岩夹层组成的一套蚀变火山岩系。汉那角剖面的火山碎屑岩和熔岩及史莱夫角的橄榄玄武岩均具有中白垩世的年龄。晚白垩世火山活动的产物以粗玄岩为代表,集中出露在西多斯角一带。伴随着火山活动,始新世英云闪长岩侵入白垩系火山岩地层。更新世至现代则有依诺特角组橄榄玄武岩在岛的东北部产出。上述火山活动随时间演进而自北西向南东不断迁移的特点,与整个南设得兰群岛火山作用的发展趋势相符。岩石化学和地球化学资料表明,百耳斯半岛熔岩、史莱夫角的橄榄玄武岩和西多斯角的粗玄岩等白垩纪火山岩基本属于钙碱性岩系并且具有低钾低镁的特点。早第三纪的英云闪长岩继承了橄榄玄武岩和粗玄岩的成分特点,同是南设得兰群岛岩浆弧中生代-新生代火山作用的产物,在钙碱性岩系岩浆演化的晚期生成。而鲍勒斯山组的熔岩和汉那角的熔岩表现出岩相学和岩石化学性质上的  相似文献   
136.
Mount Sidley is a complex, polygenetic stratovolcano composed primarily of phonolitic and trachytic lavas and subordinate pyroclastic lithologies at the southern extremity of the Executive Committee Range, a linear chain of volcanoes in central Marie Byrd Land, Antarctica. Detailed field investigation coupled with 14 high precision 40Ar/39Ar age determinations reveal a 1.5 million year life span between 5.7 and 4.2 Ma in which three major phonolitic central vent edifices (Byrd, Weiss and Sidley volcanoes) and their calderas were developed (5.7–4.8 Ma). This was followed (4.6–4.5 Ma) by the eruption of trachytic magmas from multiple vent localities further south, and then by small volume benmoreite-mugearite lavas and tephras around 4.4–4.3 Ma at the southern end of Mount Sidley. The final phase of activity was the eruption of basanite cones at approximately 4.2 Ma. The southward migration of volcanic activity was accompanied by distinct changes in magma composition and is best explained by the sequential release of magmas stored within an intricate system of conduits and chambers in the crust by tectonically driven (magma assisted?) fracture propagation. The style of volcanic migration at Mount Sidley is emulated on a larger scale by other volcanoes in the Executive Committee Range, in which progressive southward displacement of volcanic activity corresponds with significant petrological variations between major centers.  相似文献   
137.
The tuff ring of Averno (3700 years BP) is a wide maar-type, lake-filled volcano which formed during one of the most recent explosive eruptions inside the Campi Flegrei caldera.The eruptive products consist of (a) a basal coarse unit, intercalated ballistic fallout breccia, subplinian pumice deposits and pyroclastic surge bedsets and (b) an upper fine-grained, stratified, pyroclastic surge sequence.During the deposition of the lower unit both purely magmatic (lapilli breccia) and hydromagmatic episodes (wavy and planar bedded, fine ash pyroclastic surge bedsets) coexisted. The hydromagmatic deposits exhibit both erosive and depositional features. The upper unit mostly comprises fine grained, wet pyroclastic surge deposits. The pyroclastic surges were controlled by a highly irregular pre-existing topography, produced by volcano-tectonic dislocation of older tuff rings and cones.Both the upper and lower units show decreasing depletion of fines with increasing distance from the vent. The ballistic fallout layers, however, exhibit only a weak increase in fines with distance from the vent, in spite of marked fining of the lapilli and blocks. The deposits consist dominantly of moderately to highly vesicular juvenile material, generated by primary magmatic volatile driven fragmentation followed by episodes of near-surface magma-water interaction.The evolution of the eruption toward increased fragmentation and a more hydromagmatic character may reflect that the progressive depletion in magmatic volatiles and a decrease in conduit pressure during the last stage of the eruption, possibly associated with a widening of the vent at sea level.  相似文献   
138.
In southern British Columbia the terrestrial heat flow is low (44 mW m–2) to the west of the Coast Plutonic Complex (CPC), average in CPC (50–60 mW m–2),and high to the east(80–90 mW m–2). The average heat flow in CPC and the low heat generation (less than 1 W m–3) indicate that a relatively large amount of heat flows upwards into the crust which is generally quite cool. Until two million years ago the Explorer plate underthrust this part of the American plate, carrying crustal material into the mantle. Melted crustal rocks have produced the inland Pemberton and Garibaldi volcanic belts in the CPC.Meager Mountain, a volcanic complex in the CPC 150 km north of Vancouver, is a possible geothermal energy resource. It is the product of intermittent activity over a period of 4 My, the most recent eruption being the Bridge River Ash 2440 y B.P. The original explosive eruption produced extensive fracturing in the granitic basement, and a basal explosion breccia from the surface of a cold brittle crust. This breccia may be a geothermal reservoir. Other volcanic complexes in the CPC have a similar potential for geothermal energy.Earth Physics Contribution No. 704.  相似文献   
139.
ABSTRACT

Active and remnant back-arc regions do not follow a typical conductive lithosphere cooling model, but instead have an apparent two-stage cooling, defined by a high heat flow back-arc region during subduction and a second post-subduction heating event that extends elevated heat flow for several 10s million years. Numerical one-stage cooling models have not reproduced observed heat flow anomalies in active subduction zones using physically realistic parameters and require a secondary post-subduction heating mechanism. Here, an extension driven-volcanism model is developed to examine extension driven heating and volcanism as a mechanism to produce a prolonged thermal anomaly within back-arc lithosphere. This model is tested using the recorded thermal evolution of the Northern Cordillera Volcanic Province (NCVP), a Neogene-Quaternary alkaline volcanic province located in the remnant back-arc region of the Pacific-North American subduction zone in British Columbia, Canada. A single steady-state lithosphere geotherm does not intersect all previously published temperature estimates, suggesting previous data record the thermal evolution of the NCVP. Calculated geotherms at equilibrium with the minimum and maximum MELTS temperatures predict an increase in reduced mantle heat flow (Qm ) from 43 to 72 mW/m2 and lithosphere thinning from a depth of 87 to 48 km. The newly developed extension-volcanism model reproduced the calculated pre- and post-volcanism thermal regimes for the NCVP and supports that extension within the remnant back-arc could produce the present heat flow anomaly and volcanism. The model most readily produces volcanism when Qm is ~45–65 mW/m2, a typical range for back-arcs. Back-arc regions are prime locations for limited volcanism because their warmer thermal regime minimizes tectonic stress requirements to produce volcanism. Additionally, two-stage cooling of back-arcs can be explained with a time-dependent extension-volcanism thermal feedback mechanism that is possible because of the subduction driven pre-heating of back-arc regions.  相似文献   
140.
We report here a40Ar-39Ar age of 66.0 ± 0.9 Ma (2σ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2 km thick bottom part of the exposed basalt flow sequence in the Western Ghats was extruded very close to 67.4 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号