首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   7篇
  国内免费   21篇
地球物理   8篇
地质学   75篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2022年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   1篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
41.
The French Massif Central constitutes an exceptional study area due to the diversity of its metallic deposits, its internal position in the Variscan belt, and the abundance of available geological, geophysical and metallogenic data obtained within the GeoFrance 3D programme. The deposits, formed towards the end of the orogenic evolution, represent the economic products of two distinct mineralizing systems, a Au ± Sb hydrothermal system and a W ± Sn and rare-metals magmatic–hydrothermal system, which were simultaneously active during a short time span between ca. 310 and 300 Ma.Two types of gold deposit can be distinguished on the basis of their depth of emplacement: “deep-seated” gold deposits developed under lithostatic to hydrostatic pressure during rapid exhumation, and “shallow” gold deposits emplaced under hydrostatic pressure with no significant uplift.Deposits of W ± Sn and rare-metals were emplaced in the upper crust during final crystallization of specialized magmas after their rapid ascent, perhaps enhanced by simultaneous regional uplift. The gold-bearing systems are associated with a complex network of re-activated crustal-scale faults initially active during the period between 335 and 315 Ma. Normal motion along the faults, coeval with 335 to 315 Ma granite–migmatite domes, played a major role in the 3D distribution of the hydrothermal plumbing system. Gold and related metals were carried within huge hydrothermal cells, which reached ca. 100 km by 10 km in area, and 30 km in depth. In contrast, granites rich in magmatophile elements (W, Sn, rare-metals) generated smaller hydrothermal cells (10 km by 10 km in area, and < 6 km deep). Extraction of metals, by both deep-seated fluids and specialized magmas, occurred during granulitization of the lower crust at 300 ± 15 Ma. In the French Massif Central, the genesis of the two late Carboniferous mineralizing systems coincided with the end of syn-collisional extension and ended just before post-collisional extension.  相似文献   
42.
Uranium Provinces in China   总被引:1,自引:0,他引:1  
Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in t  相似文献   
43.
产于太古宙中深变质岩中的金矿床在我国华北东北地区分布很广,成矿时代主要靠同位素年龄及其与后期岩浆活动的关系来确定。夹皮沟金矿是该型矿床中工作较多且有代表性的一个矿床,对其成矿时代有前寒武纪(Ar、Pt)成矿、显生宙(海西、海西一印支、燕山)成矿及前寒武纪十显生亩成矿等不同认识。本文根据矿脉与海西期花岗闪长岩及脉岩的关系,以及含金石英包裹体Rb-sr等时线年龄资料,认为成矿属海西期或海西一印支期,可能有燕山期的叠加。由于石英含过剩氩,故所得元古宙Ar-Ar、K-Ar表面年龄无地质意义,锆石可能具继承性,其太古宙年龄不能肯定为成矿时代。该矿是否有前寒武纪成矿期尚待进一步工作。  相似文献   
44.
Shallow water (< 50 m) marine diversity curves for the Phanerozoic, based on area changes due to sea-level variation and continental movements, are presented. It is shown that a change in the degree of endemism can alter diversity more than the effect of sea-level change, or change in the number of faunal provinces. The pattern produced, for a constant degree of endemism, shows some rapid, but not periodic, falls in diversity. These occur in the Middle Cambrian, at the end of the Ordovician, Devonian, Permian, Cretaceous and Eocene, and in the Messinian. There is no recurring single cause for these falls.  相似文献   
45.
The growth of the continental crust is generally believed to have been essentially completed in the Precambrian, and the amount of juvenile crust produced in the Phanerozoic is considered insignificant. Such idea of negligible growth in the Phanerozoic is now challenged by the revelation of very large volume of juvenile crust produced in the period of 500 to 100 Ma in several orogenic belts. While appreciable volumes of juvenile terranes in North America (Canadian Cordillera, Sierra Nevada and Peninsular Range, Appalachians) have been documented based on Nd isotopic data, the mass of new crust formed in the East-Central Asian Orogenic Belt (ECAOB), eastern part of the Altaid Tectonic Collage, appears to be much greater than the above terranes combined. New and published Nd-Sr isotope data indicate that the Phanerozoic granitoids from the southern belt of the ECAOB (Xinjiang-West Mongolia-Inner Mongolia-NE China) as well as from Mongolia and Transbaikalia were generated from sources dominated by a depleted mantle component. These granitoids represent a significant growth of juvenile crust in the Phanerozoic. Although most plutons in this huge orogenic belt belong to the calc-alkaline series, the ECAOB is also characterized by the emplacement of voluminous A-type granites. The origin of these rocks is probably multiple and is still widely debated. However, the isotopic data (Sr-Nd-O) and trace element abundance patterns of A-type granites from the ECAOB clearly indicate their mantle origin. The evolution of the ECAOB and the entire Altaid Collage is most likely related to successive accretion of arc complexes. However, the emplacement of a large volume of post-tectonic A-type granites requires another mechanism—probably through a series of processes including underplating of massive basaltic magma, partial melting of these basic rocks to produce granitic liquids, followed by extensive fractional crystallization. The proportion of juvenile to recycled, as well as that of arc-related to plume-generated, continental crust remains to be evaluated by more systematic dating and isotope tracer studies.  相似文献   
46.
http://www.sciencedirect.com/science/article/pii/S1674987114000243   总被引:2,自引:0,他引:2  
We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimi- nation systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%), linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%). The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74%) of Mid-Ocean-Ridge type (MORB type), in contrast to the equal proportion of RiftlContinental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals), starting in late Paleo- to early Mesoproterozoic (ca. 2.0-1.8 Ga), exhibit an apparent decrease in the average values of incom- patible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from HadeanJArchean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles) in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50% of all known worldwide greenston  相似文献   
47.
本文采用给每个岩石单元的古地磁极以单位权的方法,对目前收集到的、并按一定可靠性判据选择出来的华南和华北陆块的古地磁数据,进行了统计分析,绘制了它们的显生宙视极移曲线。进而根据古地磁结果,分析了两大陆块显生宙的构造演化,着重探讨了它们的碰撞时限和拼合过程。  相似文献   
48.
Abstract: Throughout the Phanerozoic Era, magnetite-series and ilmenite-series granitoids are heterogeneously distributed on both sides of the Pacific Ocean. Ilmenite-series granitoids are dominant in the western Pacific rim, while magnetite-series granitoids prediminate in the eastern Pacific orogenic belt. Regional distribution patterns of the two series of paired belt are also recognized differently, implying different tectonic and geochemical settings on both sides of the Pacific Ocean. The differences reflect on the predominance of Sn-W deposits in the western Pacific but sulfide-forming mineral commodities in the eastern Pacific rims. To determine redox state of granitoids is the first step in mineral exploration of granitoid affinity.  相似文献   
49.
Strontium isotopic evolution of the Phanerozoic seawater is an emerging research field of the material cycle in the Earth’s outer-spheres. It is greatly significant for the research of the environmental change on the Earth’s surface during the geological history. The researches of the strontium isotopic evolution of the Phanerozoic seawater have gone through three stages: The early stage, the accumulated stage, and the integrated stage. In the early stage, the primitive evaluation of the diagenetic alteration and the low precision of the analytical instruments resulted in most strontium isotope data without stratigraphic significance. Most researches were only at the initially exploratory stage. In the accumulated stage, the gradually mature evaluation of the diagenetic alteration and higher precision of the analytical instruments made ongoing progress in the researches, especially the establishment and development of the high-resolution strontium isotopic evolution curves of the Cenozoic seawater had spawned a new interdisciplinary branch: Strontium isotope stratigraphy. In the integrated stage, the accumulated high-quality strontium isotope data had been integrated into some strontium isotope database of Phanerozoic seawater. These databases are becoming one of the effective tools to solve the problems in the stratigraphy, petrology, ore deposit, hydrology, and other related applications. Currently, many problems still have not been satisfactorily resolved in the researches of the strontium isotopic evolution of the Phanerozoic seawater, such as the preservation differences of the original seawater information in a sample, the age of uncertainty of samples, lower dating accuracy of more ancient samples, the materials and stratigraphic questions of the Cambrian samples, trace rubidium contamination of samples, the isotope fractionation between 86Sr and 88Sr, the interlaboratory bias, the uncertainty of the data fitting, etc. These problems are the difficulties to possess more practicability and applicability of strontium isotope stratigraphy. Based on the summary of the research progress, we attempted to systematically summarize the stages and differences of the researches of strontium isotopic composition of Phanerozoic seawater at different periods. We wish this paper offer some perspective to the researches of strontium isotopic composition of Phanerozoic seawater in future.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号