首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  国内免费   87篇
地球物理   9篇
地质学   162篇
海洋学   8篇
综合类   2篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有183条查询结果,搜索用时 375 毫秒
111.
The Namche Barwa Complex (NBC) in the eastern Himalayan syntaxis, south Tibet, is generally interpreted as the north-eastern extremity of the exposed Greater Himalayan Sequence, comprising Neoproterozoic to early Paleozoic sedimentary strata along the northern margin of the Indian continent. Field and petrological investigations indicate that the NBC consists mainly of orthogneiss, paragneiss, amphibolites and calc-silicate rocks. U-Pb zircon data demonstrate that the protoliths of the orthogneiss formed during late Paleoproterozoic at ca. 1610 Ma and also in early Paleozoic at ca. 490-500 Ma. The amphibolites were derived from mafic magmatic rocks formed during 1645 to 1590 Ma. Zircons in the paragneisses have highly variable inherited zircon ages ranging from the Neoarchean to early Paleozoic, with four major age populations of 2490 Ma, 1640 Ma, 990 Ma and 480 Ma. The calc-silicate rock has zircons with early Paleozoic metamorphic age of 538 Ma. Almost all the rocks of the NBC have been metamorphosed during Cenozoic with the metamorphic zircon U-Pb ages ranging from 8 to 30 Ma and a peak at 23 Ma. These, together with previous results suggest that the NBC was originally derived from an Andean-type orogeny following the Columbia supercontinent assembly, and experienced multiple reworking during the Grenvillian, Pan-African and Himalayan orogenies. We conclude that the NBC in the eastern Himalayan syntaxis was derived from different provenance and tectonic setting as compared to those of the Greater Himalayan Sequence which constitutes the high-grade metamorphic core of the western and central Himalayan orogenic belt. We thus infer that the NBC was originally part of the eastern segment of the Central Indian Tectonic Zone.  相似文献   
112.
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.%) and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88), K-feldspar (Or27–95 Ab5–61), diopside (En34–40Fs11–18Wo46–49), biotite, and Ca-amphibole (edenite) build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC). Evidences such as (1) disequilibrium micro-textures in feldspars, (2) microgranular mafic enclaves (MME) and (3) synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9) with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes) share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved through multiple physical processes like convection, shear flow, crystal accumulation and magma mixing.  相似文献   
113.
http://www.sciencedirect.com/science/article/pii/S1674987113001151   总被引:1,自引:0,他引:1  
Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Comp...  相似文献   
114.
Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC) which belongs to the EW to ENE-WSW tending 1500 km long Proterozoic orogenic belt amalgamat ng the North and South Indian cratonic blocks. The late Grenvillian (1071 ±64 Ma) Raghunathpur porphyritic granitoid gneiss (PGG) batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE-WSW trending North Purulia sr~ear zone, Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace- elements, mineral chemistry and S7Sr/S6Sr ratio) suggest these granitoids to be classified as the shosh- onitic type. Raghunathpur batholith was emplaced at around 800 ~C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. l'he Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridi- zation of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (~ 1.0 Ga) of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.  相似文献   
115.
A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Complex,East Antarctica,provides unequivocal evidence for extreme crustal metamorphism possibly associated with the collisional orogeny during Neoarchean.The reaction microstructures associated with sapphirine + quartz vary among the samples,probably suggesting different tectonic conditions during the metamorphic evolution.Sapphirine and quartz in TI sample were probably in equilibrium at the peak stage,but now separated by corona of Grt + Sil + Opx suggesting near isobaric cooling after the peak metamorphism,whereas the Spr + Qtz + Sil + Crd + Spl assemblage replaces garnet in PP sample suggesting post-peak decompression.The application of mineral equilibrium modeling in NCKFMASHTO system demonstrated that Spr + Qtz stability is lowered down to 930 ℃ due to small Fe3+ contents in the rocks (mole Fe2O3/(FeO + Fe2O3) =0.02).The TI sample yields a peak p-T range of 950-1100 ℃ and 7.5-11 kbar,followed by cooling toward a retrograde stage of 800-950 ℃ and 8-10 kbar,possibly along a counterclockwise p-T path.In contrast,the peak condition of the PP sample shows 1000-1050 ℃ and >12 kbar,which was followed by the formation ofSpr + Qtz corona around garnet at 930-970 ℃ and 6.7-7.7 kbar,suggesting decompression possibly along a clockwise p-T trajectory.Such contrasting p-T paths are consistent with a recent model on the structural framework of the Napier Complex that correlates the two areas to different crustal blocks.The different p-T paths obtained from the two localities might reflect the difference in the tectonic framework of these rocks within a complex Neoarchean subduction/collision belt.  相似文献   
116.
http://www.sciencedirect.com/science/article/pii/S1674987113000315   总被引:2,自引:0,他引:2  
The Panzhihua gabbroic intrusion,part of the plumbing system of the Emeishan large igneous province, intruded late-Proterozoic dolomites and marls about~263 Ma ago.The dolomites in the contact aureole were converted to brucite marbles and a diverse suite of forsterite,diopside and garnet skarns.The variation in mineralogy is explained in part by differences in the composition of the protolith,particularly the proportion of silica minerals and clay,and in part by transfer of elements from intruding magmas.The trace element compositions of most marbles and skarns are very similar to those of unmetamorphosed dolomites and marls,but some contain high Si,Ti,and Fe contents that are interpreted to have come from a magmatic source.Three brucite marbles sampled~10 m from the contact of the intrusion and named "enriched brucite marble" have trace element compositions very different from their dolomitic protolith:their rare earth elements are strongly enriched whereas levels of Nb-Ta,Zr-Hf and Ti are very low.These characteristics resemble those of carbonate liquid in equilibrium with silicate liquid or more probably with silicate minerals in the case of Panzhihua,a similarity we take to indicate that the sample underwent partial melting.Samples taken up to 300 m from the contact contain brucite indicating that high temperatures persisted well into the country rocks.However,other samples collected only tens of metres from the contact are only slightly recrystallized indicating that conditions in the aureole were highly variable.We suggest that temperatures within the aureole were controlled by conduction of heat from the main intrusion and by supply of additional heat from abundant small dykes within the aureole.Circulation of fluids derived from deeper levels in the aureole flushed the carbon dioxide from the dolomite,lowering temperature needed to partially melt carbonate to the temperatures attained near the intrusion.Irregular but extensive heating destabilized the carbonates of the aureole and decarbonation reactions associated with carbonate breakdown and melting emitted a large volume of CO2,with potential impact on global climate.  相似文献   
117.
Massif anorthosites form when basaltic magma differentiates in crustal magma chambers to form low-density plagioclase and a residual liquid whose density was greater than that of enclosing crustal rocks. The plagioclase and minor pyroxene crystallized in-situ on the floor of the magma chamber to produce the anorthosite complex, and the residual liquid migrated downwards, eventually to solidify as dense Fe-rich cumulates some of which were removed to the mantle. These movements were facilitated by high temperatures in Proterozoic continental crust, thus explaining the restriction of large anorthosite massifs to this period in Earth history.  相似文献   
118.
The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.  相似文献   
119.
云南峨眉山高钛和低钛玄武岩的岩石成因   总被引:4,自引:4,他引:0  
峨眉山玄武岩主要的岩石类型是低钛玄武岩和高钛玄武岩,并有少量的苦橄岩。它们不同程度地富集大离子亲石元素和轻稀土元素,相对亏损重稀土元素,稀土元素分馏明显或比较明显,相容元素(Co、V、Cr、Ni)显著亏损。低钛玄武岩浆受到陆壳物质的明显混染,高钛玄武岩浆也受到混染,但混染程度弱于低钛玄武岩浆。同化混染对Sr同位素和大离子亲石元素的影响程度大于对稀土元素和Nd同位素的影响程度。混染物是下地壳变质岩,也有少量上地壳物质。未受混染的样品具有适度亏损的Nd、Sr同位素。高钛玄武岩在岩浆演化过程中主要分离结晶相/堆晶相是单斜辉石,并有少量的斜长石。低钛玄武岩中,单斜辉石和斜长石的分离结晶作用是最主要的因素。低钛玄武岩的主体部分是在尖晶石稳定域与石榴石稳定域之间的过渡带熔融的;高钛玄武岩的主体部分是在石榴石稳定域内熔融的,极少部分是在尖晶石稳定域内熔融的。  相似文献   
120.
Archaean–Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine–spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean–Paleoproterozoic mineralization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号