首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   11篇
  国内免费   11篇
大气科学   2篇
地球物理   73篇
地质学   153篇
海洋学   5篇
天文学   7篇
综合类   4篇
自然地理   37篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   15篇
  2014年   13篇
  2013年   14篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   21篇
  2008年   28篇
  2007年   15篇
  2006年   17篇
  2005年   33篇
  2004年   7篇
  2003年   8篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有281条查询结果,搜索用时 78 毫秒
71.
A 90,000-yr record of environmental change before 18,000 cal yr B.P. has been constructed using pollen analyses from a sediment core obtained from Salar de Uyuni (3653 m above sea level) on the Bolivian Altiplano. The sequence consists of alternating mud and salt, which reflect shifts between wet and dry periods. Low abundances of aquatic species between 108,000 and 50,000 yr ago (such as Myriophyllum and Isoëtes) and marked fluctuations in Pediastrum suggest generally dry conditions dominated by saltpans. Between 50,000 yr ago and 36,000 cal yr B.P., lacustrine sediments become increasingly dominant. The transition to the formation of paleolake “Minchin” begins with marked rises in Isoëtes and Myriophyllum, suggesting a lake of moderate depth. Similarly, between 36,000 and 26,000 cal yr B.P., the transition to paleolake Tauca is also initiated by rises in Isoëtes and Myriophyllum; the sustained presence of Isoëtes indicates the development of flooded littoral communities associated with a lake maintained at a higher water level. Polylepis tarapacana-dominated communities were probably an important component of the Altiplano terrestrial vegetation during much of the Last Glacial Maximum (LGM) and previous wet phases.  相似文献   
72.
Zircon and apatite fission track (FT) thermochronology was applied to investigate the history of cooling and denudation of the Southern Andes between 41° and 42°15′S in relation to the late Cenozoic activity of the Liquiñe-Ofqui fault zone (LOFZ) and the northward migration of the Chile Triple Junction (CTJ). Fifty-six zircon and 51 apatite FT ages, plus 37 apatite confined track-length distributions were obtained mainly from plutonic rocks of the North Patagonian Batholith (NPB) in the main Andean Cordillera. Apatite FT ages and track lengths indicate a stage of rapid cooling at ∼5--3 Ma along both sides of the LOFZ, whereas older Miocene ages with monotonous cooling histories were obtained further away from the fault. Zircon FT ages range from Cretaceous to Pliocene, with marked differences observed along and across the LOFZ. Three different types of temperature-time histories characterise the post-magmatic cooling of the NPB in the region: deep intrusions with moderate and steady cooling rates, intrusions in the upper crust with very slow cooling rates following a stage of initial rapid cooling, and rapidly cooled and exhumed shallow intrusions, the latter with younger ages towards the fault zone. The most prominent denudation episode along the LOFZ is late Miocene to Pliocene, coeval with plate tectonic reconstructions for the arrival and subduction of the Chile Rise beneath the Taitao Peninsula.  相似文献   
73.
Abstract The Cretaceous-Eocene basic to intermediate marine volcanic rocks of the Mucuchi Formation constitute the Western Cordillera in northern Ecuador. Their chemical features mostly correspond to those of tholeiitic basalts with some calc-alkaline affinities and suggest an oceanic island arc setting. The Macuchi rocks are affected by low-grade, non-deformative metamorphism, characterized by zeolite, prehnite-pumpellyite and lower greenschist facies assemblages. Depth-zonation is suggested by the downward mineral sequence: (i) laumontite+ (pistacitic epidote, pumpellyite + prehnite); (ii) pumpellyite+ prehnite + pistacitic epidote; (iii) actinolite+biotite+ pistacitic epidote + chlorite. This broad zonation and the chemistry of individual minerals point to an interaction between the volcanic rocks and sea-water under a moderate to high thermal gradient (= 75° C/km?). Alteration appears to have been dependent primarily on fluid control (volume, pressure, composition), temperature and reaction kinetics which together partly overshadow the role of load-pressure. Compositional variations of a mineral species at the scale of a contiguous flow or even at the scale of a thin section show that intensity of alteration was spatially uneven depending on rock permeability and consequently, metastable equilibrium commonly exists. However, a progressive approximation to equilibrium as a result of P–T control is shown by the mineralogy. A high fo2 of the fluid phase is evident from the mineral chemistry. The metamorphism of the Macuchi volcanics is similar to the hydrothermal-burial type produced during the development of a volcanic arc where lavas and volcanoclastics accumulated in a shallow marine environment. However, some of its characteristics point to a transition toward systems defined by a higher T/P ratio such as those found in ocean-floor metamorphism. A model is proposed in which the Macuchi volcanics are assigned to an oceanic island arc generated contemporaneously with a marginal basin which has opened as the outcome of progressive north-south attenuation of the continental crust due to mantle diapirism.  相似文献   
74.
The large (≈10000 km2) and local-scale (<400 km2) geomorphologic, geomorphometric and field evidence indicates that, from the mid-Miocene onwards, the Atacama Fault System (AFS) accommodated the relative uplift of the western side of the Chilean Coastal Cordillera of the Chañaral region (southern Atacama Desert). The mean regional altitude systematically decreases eastwards crossing the AFS, independent of the lithological characteristics of the substratum cut by this system of faults. Topographic analysis reveals a more incised landscape west of the AFS that, at the local scale, is reported by the distribution of the altitudes (hypsometric curves and integrals) of tributary basins and by the presence of terraces. In the Middle and Upper Miocene, a thick (>300 m) sedimentary succession was deposited east of the AFS. The succession fills previously deep paleovalleys. And it consists of gravel, so-called “Atacama Gravels”, which passes laterally into fine-grained playa related deposits near the AFS. We interpret the deposition of this succession as a result of a blocking closure of the valley flowing from the Precordillera due to the activity on AFS. A pedimentation episode followed sediment deposition and is locally strongly re-incised by the main modern-day river valleys draining the Precordillera. Incision may result from either regional uplift of the forearc, and/or from more localized activity on the AFS. Furthermore, Recent (Quaternary?) tectonic activity on the AFS has been observed which is consistent with a localized relative uplift of the crustal block west of the AFS.  相似文献   
75.
There is a large database of triaxial stress measurements at the El Teniente Mine, Central Chile, but the complex geology, severe topography, and proximity of all measurements to extensive mining excavations made interpretation of the stress field difficult. The measurements were analyzed using three-dimensional numerical stress analysis and decomposition of the stress field into gravitational and tectonic components. By removing gravitational stresses plus local effects from the tectonic component of the stress field a calculation of the far-field tectonic stress tensor is made. It is shown that variations in the tectonic component of stress are related to shear zones cutting through the mine. The far-field major principal component of the tectonic stress field was found to be oriented approximately N–S. This is consistent with the most recent direction of local shortening based on kinematic analysis of faults, but is perpendicular to the direction of regional crustal shortening. There appears to be a limiting envelope to the magnitude of the stress field implying that the shear zones are in a state of limiting equilibrium with regional tectonic driving forces.  相似文献   
76.
For over 50 years, several models based on diverse geologic concepts and variable quality of data have been proposed to explain the major structure and history of the Mérida Andes (MA), in western Venezuela. Lately, this chain growth and associated flexural basins deepening have been related to incipient type-A subductions of either polarity, accounting for the across-chain asymmetry. However, these recent models have not well integrated the present tectonically active setting driven by neighboring major plate interactions. At present, this chain exhibits ongoing strain partitioning where cumulative right-lateral slip along chain axis is as much as half of, or about the same, as the transverse shortening since late Miocene, thus implying that the NNE-directed Maracaibo block extrusion with respect to the South America (SA) plate is not a secondary feature. Consequently, this paper discusses some limitations exhibited by the SE-directed continental subduction models—Maracaibo crust underthrusting the Mérida Andes—in the light of available geological and geophysical data. Besides, it is herein proposed that the Mérida Andes structuration is related to a NW-directed, gently dipping, incipient type-A subduction, where chain growth and evolution are similar to those of a sedimentary accretionary wedge (i.e., Barbados), but at crustal scale and with ongoing strain partitioning. This continental subduction is the SE portion of a major orogenic float that also comprises the Perijá range and the Santa Marta block.  相似文献   
77.
Samples of the deep crust and upper mantle in the Northern Andes occur as abundant xenoliths in the Granatífera Tuff, a late Cenozoic vent in the Mercaderes area of SW Colombia. The lower crustal assemblage includes granulites, hornblendites, pyribolites, pyroxenites and gneisses; mafic rocks predominate, but felsic material is also common. PT conditions for the pyribolite assemblages (i.e. Hbl+Fs/Scp+Grt+Cpx+Qtz±Bt), which are the best constrained, are 720–850 °C and 10–14 kbar, consistent with a deep-to-lower crustal origin. A notable feature of this xenolith suite is that it is dominated by hornblende. However, mineral reactions within the suite show that there is a transition from amphibolite to granulite facies, and there is a probable restite–melt relationship represented within the suite. However, the latter appears to be dominated by hornblende and garnet.The mafic rocks mostly lack the high Cr and Ni that would be expected of cumulates. Neither do they possess the positive Sr and Eu anomalies that would be consistent with resite or cumulate models for the lower crust. They bear greatest similarity to oceanic basalts (s.l.). The Rb contents of the xenoliths, whether mafic or silicic, are very low, and the more silicic members of the suite tend to have small positive Sr and Eu anomalies, which are transitional to adakitic compositions. The Sr isotopic compositions of the xenoliths lie between 0.704 and 0.705; however, the Nd isotopic compositions are much more variable, indicating considerable long-term heterogeneity. Few of the xenoliths can be compositionally recognised as metasedimentary; however, a sedimentary component is evident in the Pb isotopic compositions. Within these constraints, our favoured model is a deep crust formed by basaltic components (subduction–accretion?), and minor sediment, which is subject to an increase in thermal gradient to produce the granulites, any melting being dominated by hornblende-out reactions involving garnet. However, there is no evidence of any pervasive crustal melting, leading to the conclusion that the voluminous Andean magmatism arises from the mantle wedge.  相似文献   
78.
Two large ice fields between 46°30′ and 51°30′S cover the Patagonian Andes. The North and South Patagonian Ice Fields are separated by the transandine depth line at 47°45′ to 48°15′S. Canal and Río Baker run through this depression. The two ice fields are generally considered relics of a continuous ice cap, which covered the entire Patagonian Andes from 39° to 52°S and extended far into the eastern foreland of the Andes. This assumption is not correct for the 200-km-long section of the Andes between Lago Pueyrredón (Lago Cochrane in Chile) (47°15′S) and Lago San Martín (Lago O'Higgins in Chile) (48°45′S). The lack of a continuous ice cap extending far into the east is caused by the transandine depth line, playing a crucial role in the fluvial erosion and the glacial scouring of this tectonic zone. This depression formed a river system (e.g. Río Baker, Río Bravo and Río Mayer) that drains towards the west. Reconstruction of the maximum glacial advance of the last ice age shows that the eastern outlet glaciers of the two ice fields between Lago San Martín and Lago Pueyrredón did not drain towards the east, but rather followed the general gradient of the transandine depth line. In this area the eastern flank of the Andes between Monte San Lorenzo (3770 m) and Sa. de Sangra (2155 m) supported valley glaciers, which were independent of the expanding ice fields. Only a few valley glaciers advanced towards the Patagonian Meseta. The terminal moraines of these glaciers were erroneously interpreted as the eastern edge of a continuous ice cap. North of 47°30′S the outlet glaciers of the NPI advanced 200 km during the LGM and the late glacial advances nearly reached to 71°W. In contrast, south of 49°S glacier expansion was comparatively less: The LGM is situated only 85–115 km east of the present margins of the large outlet glaciers (O'Higgins, Viedma, and Upsala), and no late glacial advance reached 72°W. These considerable differences of glacier expansion were influenced by the northward migration of the westerly precipitation belt during glacial cycles. There is tentative evidence that the glaciers advanced three times in the period from 14 000 to 9 500 14C years BP.  相似文献   
79.
The geological record of the Western Andean Escarpment (WARP) reveals episodes of uplift, erosion, volcanism and sedimentation. The lithological sequence at 18°S comprises a thick pile of Azapa Conglomerates (25–19 Ma), an overlying series of widespread rhyodacitic Oxaya Ignimbrites (up to 900 m thick, ca. 19 Ma), which are in turn covered by a series of mafic andesite shield volcanoes. Between 19 and 12 Ma, the surface of the Oxaya Ignimbrites evolved into a large monocline on the western slope of the Andes. A giant antithetically rotated block (Oxaya Block, 80 km×20 km) formed on this slope at about 10–12 Ma and resulted in an easterly dip and a reversed drainage on the block's surface. Morphology, topography and stratigraphic observations argue for a gravitational cause of this rotation. A “secondary” gravitational collapse (50 km3), extending 25 km to the west occurred on the steep western front of the Oxaya Block. Alluvial and fluvial sediments (11–2.7 Ma) accumulated in a half graben to the east of the tilted block and were later thrust over by the rocks of the escarpment wall, indicating further shortening between 8 and 6 Ma. Flatlying Upper Miocene sediments (<5.5 Ma) and the 2.7 Ma Lauca–Peréz Ignimbrite have not been significantly shortened since 6 Ma, suggesting that recent uplift is at least partly caused by regional tilting of the Western Andean slope.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号