全文获取类型
收费全文 | 62篇 |
免费 | 9篇 |
国内免费 | 5篇 |
专业分类
大气科学 | 2篇 |
地球物理 | 13篇 |
地质学 | 25篇 |
海洋学 | 25篇 |
综合类 | 4篇 |
自然地理 | 7篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 6篇 |
2018年 | 3篇 |
2017年 | 4篇 |
2016年 | 7篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 7篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 1篇 |
2009年 | 2篇 |
2008年 | 3篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2003年 | 1篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有76条查询结果,搜索用时 15 毫秒
41.
In the eastern United States, the use of prescribed fire as a silvicultural technique to manage for desirable upland tree species is increasing in popularity. Bark physical properties such as thickness, density, and porosity have known associations with fire tolerance among species. These physical properties simultaneously influence rainfall interception and canopy storage and thus are of interest across a range of disciplines. Furthermore, while these characteristics are innate to a species, it is unknown whether repeated exposure to fire facilitates physical change in bark structure and whether these changes are consistent among species. To answer these questions, bark samples were collected from mature pine (Pinus taeda L.) and oak (Quercus montana Willd.) trees from sites across the Bankhead National Forest in Alabama, USA under three different burn regimes: 3-year cycle, 9-year cycle, and no fire. Samples were analysed in the laboratory for bulk density, porosity, water storage capacity, and hygroscopicity (the amount of atmospheric water vapour absorbed by bark during non-rainfall conditions). Drying rates of saturated samples under simulated wetting conditions were also assessed. Oak bark had higher bulk density, lower porosity, and dried slower than pine bark. Interestingly, bark from both species had lower bulk density, higher porosity, greater water storage capacity, and dried faster in stands that were burned every 3 years compared to other fire regimes (p < 0.001). In summary, this study demonstrates that prescribed fire regimes in an eastern US forest alter bark structure and thus influence individual tree control on hydrological processes. The increase in bark water storage capacity, coupled with faster bark evaporation times may lead to less water inputs to the forest floor and drier overall conditions. Further investigation of this fire-bark-water feedback loop is necessary to understand the extent of these mechanisms controlling landscape-scale conditions. 相似文献
42.
43.
Vahid TAVAKOLI 《《地质学报》英文版》2016,90(5):1852-1864
The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite. Two subsurface-cored intervals were investigated in order to understand the original mineralogy and paleoceanic conditions. The decreasing trend of Sr concentration in these deposits shows that aragonite was precipitated during the Late Permian and then gradually changed to calcite toward the Permian–Triassic boundary (PTB). The dissolution rate of aragonite decreased from 60 m below the PTB toward the boundary, with the only exception at 10 m below the Permian-Triassic Boundary (PTB) due to the Permian–Triassic unconformity in this region. The increasing trend of Mg/Ca ratio in a global scale at the end-Permian time shows that the interpreted variation of mineralogy does not result from the change of this ratio. The increasing pCO2 and decreasing pH are considered to be the main controlling factors. The increase of Ca2+ at the end-Permian time due to the input of meteoric waters is too little to fully compensate this effect. A local maximum of the Si content just at the PTB confirms the input of runoff waters. 相似文献
44.
B. Sindhu I. Suresh A. S. Unnikrishnan N. V. Bhatkar S. Neetu G. S. Michael 《Journal of Earth System Science》2007,116(3):261-274
Ocean modellers use bathymetric datasets like ETOPO5 and ETOPO2 to represent the ocean bottom topography. The former dataset
is based on digitization of depth contours greater than 200 m, and the latter is based on satellite altimetry. Hence, they
are not always reliable in shallow regions. An improved shelf bathymetry for the Indian Ocean region (20°E to 112°E and 38°S
to 32°N) is derived by digitizing the depth contours and sounding depths less than 200 m from the hydrographic charts published
by the National Hydrographic Office, India. The digitized data are then gridded and used to modify the existing ETOPO5 and
ETOPO2 datasets for depths less than 200 m. In combining the digitized data with the original ETOPO dataset, we apply an appropriate
blending technique near the 200 m contour to ensure smooth merging of the datasets. Using the modified ETOPO5, we demonstrate
that the original ETOPO5 is indeed inaccurate in depths of less than 200 m and has features that are not actually present
on the ocean bottom. Though the present version of ETOPO2 (ETOPO2v2) is a better bathymetry compared to its earlier versions,
there are still differences between the ETOPO2v2 and the modified ETOPO2. We assess the improvements of these bathymetric
grids with the performance of existing models of tidal circulation and tsunami propagation. 相似文献
45.
《China Geology》2021,4(4):644-657
Source rock assessment is a key step in any petroleum exploration activity. The results of Rock-Eval analysis showed that Sarchahan Formation was in the late oil window, while the Faraghun and Zakeen Formations were just in the early stages of the oil window. Furthermore, Sarchahan, Zakeen and Faraghun Formations exhibited different kerogen types (types-Ⅱ, types-Ⅲ and type-Ⅲ, respectively). Refining the kinetic parameters using the OPTKIN software, the error function returned error values below 0.1, indicating accurate optimization of the kinetic parameters. Based on the obtained values of activation energy, it was clear that Sarchahan Formation contained type-Ⅱ kerogen with an activation energy of 48–52 kcal/mol, while Zakeen and Faraghun Formations contained type-III kerogen with activation energies of 70–80 kcal/mol and 44–56 kcal/mol, respectively. The geographical distribution of the samples studied in this work, it was found that the organic matter (OM) quantity and quality increased as one moved toward the Coastal Fars in Sarchahan Formation. The same trend was observed as one moved from the southern coasts of Iran toward the shaly and coaly portions of Faraghun Formation in the center of the Persian Gulf.©2021 China Geology Editorial Office. 相似文献
46.
Heather Cardella Dammeyer Susanne Schwinning Benjamin F. Schwartz Georgianne W. Moore 《水文研究》2016,30(24):4568-4581
Brush removal is widely practiced as a tool for increasing groundwater recharge, but its efficacy depends greatly on the way in which the removed species interact with the hydrological system relative to the vegetation replacing it. We examined the effects of Ashe juniper removal in the recharge zone of the Edwards Aquifer, Texas, USA, a karst aquifer. The study was conducted in an Ashe juniper (Juniperus ashei)–live oak (Quercus fusiformis) woodland on a hill slope composed of rocky, shallow soils over fractured limestone bedrock. Ashe juniper is a native species that has been encroaching grasslands and savannas over the past century. In September 2008, a plot was cleared of 90% of its juniper trees. Tree transpiration, predawn water potentials and vegetation cover across the cleared plot and an adjacent reference site were measured from May 2009 to December 2011. Stand‐level tree transpiration from May 2009 to March 2010 was diminished by a severe summer drought in 2009, from which trees were slow to recover. Subsequently, tree transpiration was 5–10× higher in the woodland compared to the clearing. For all of 2011, also a drought year, tree transpiration in the woodland exceeded precipitation inputs, indicating a high capacity for water storage at the study site. However, site differences for oak trees were generally larger than for juniper trees. While juniper removal accounted for a 431 mm year?1 difference in tree transpiration between sites, vegetation cover in the clearing increased from 42% to 90% over two years, suggesting that understory growth was increasingly compensating for the loss of juniper transpiration. We conclude that the removal of a relatively shallow‐rooted tree, when replaced with herbaceous vegetation and low shrubs, has little effect on deep recharge. By contrast, successive years of precipitation extremes may be more effective increasing recharge by lowering the water transport capacity of trees in the aftermath of severe drought. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
47.
Contamination patterns and molluscan and polychaete assemblages in two Persian (Arabian) Gulf oilfields 下载免费PDF全文
Paolo G. Albano Nadezhda Filippova Jan Steger Hannah Schmidbaur Adam Tomašových Michael Stachowitsch Martin Zuschin 《Marine Ecology》2016,37(4):907-919
This study examined two shallow‐water, offshore oil facilities and their surroundings in the Umm Al Dalkh and Zakum oilfields [United Arab Emirates, Persian (Arabian) Gulf]. The focus was on sediment contamination levels and the detection of disturbance based on two representative invertebrate components of the benthos: molluscs and polychaetes. We tested the hypothesis that significant disturbance to the community has occurred, by examining whether distance from the platform or variation in contaminants explains among‐site variation in the composition of benthic communities. Moreover, we also tested the hypothesis that organic enrichment because of oil input has modified the feeding guild structure by examining whether the relative abundances of filter‐feeders, deposit‐feeders and omnivores are correlated with distance from the platform or with contamination by hydrocarbons. The contamination levels and their spatial distribution in the sediments differed significantly between the two fields, as did their mollusc and polychaete communities. The within‐field variability, however, was much lower: no clear structuring of contamination values and species composition and abundance was detectable in relation to distance from the oil platform. Contamination levels were low, often below detection levels or international guideline values. Variation in contaminant concentrations did not explain variation in taxonomic composition and abundance. The relative abundance of the above‐mentioned feeding guilds did not correlate with either distance from the platform or with contaminant concentrations. These patterns may reflect the long time that has elapsed since drilling (15–20 years), which appears to have allowed contaminants to disperse and degrade and assemblages to recover from the impact, if indeed such a disturbance ever occurred. In contrast to low values of barium and total petroleum hydrocarbons, associated with well drilling, some metals were at their highest concentrations beneath the central platforms. This suggests that production‐related activities (including platform cleaning and maintenance) are currently a more relevant contamination source. 相似文献
48.
Ebrahim Ghasemi‐Nejad Alastair Ruffell Hossein Rahimpour‐Bonab Mohammed Sharifi Behzad Soltani Ebrahim Sfidari 《Geological Journal》2015,50(2):210-219
Spectral gamma ray (SGR) logs are used as stratigraphic tools in correlation, sequence stratigraphy and most recently, in clastic successions as a proxy for changes in hinterland palaeoweathering. In this study we analyse the spectral gamma ray signal recorded in two boreholes that penetrated the carbonate and evaporate‐dominated Permian–Triassic boundary (PTB) in the South Pars Gasfield (offshore Iran, Persian Gulf) in an attempt to analyse palaeoenvironmental changes from the upper Permian (Upper Dalan Formation) and lower Triassic (Lower Kangan Formation). The results are compared to lithological changes, total organic carbon (TOC) contents and published stable isotope ( δ 18O, δ 13C) results. This work is the first to consider palaeoclimatic effects on SGR logs from a carbonate/evaporate succession. While Th/U ratios compare well to isotope data (and thus a change to less arid hinterland climates from the Late Permian to the Early Triassic), Th/K ratios do not, suggesting a control not related to hinterland weathering. Furthermore, elevated Th/U ratios in the Early Triassic could reflect a global drawdown in U, rather than a more humid episode in the sediment hinterlands, with coincident changes in TOC. Previous work that used spectral gamma ray data in siliciclastic successions as a palaeoclimate proxy may not apply in carbonate/evaporate sedimentary rocks. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
49.
Sfidari EBRAHIM Amini ABDOLHOSSIEN Kadkhodaie ALI Sayedali MOHSEN Zamanzadeh SEYED MOHAMMAD 《《地质学报》英文版》2018,92(4):1523-1543
The Kimmeridgian‐Tithonian aged Arab Formation, as the main reservoir of the Jurassic succession in the Balal oilfield, located in the offshore region of the Iranian sector of the Persian Gulf, is investigated in this study. The formation is composed of dolomites and limestones with anhydrite interbeds. Based on detailed petrographic studies, six microfacies are recognized, which are classified in four sub‐environments including supratidal, intertidal, lagoonal and the high energy shoal of a homoclinal carbonate ramp. The main diagenetic features of the studied succession include dolomitization, anhydritization, cementation, micritization, fracturing and compaction. Based on stable isotope data, dolomitization of the upper Arab carbonates is related to sabkha settings (i.e. evaporative type). In terms of sequence stratigraphy, three shallowing‐upward sequences are recognized, based on core and wireline log data from four wells of the studied field. Considering depositional and diagenetic effects on the reservoir quality, the studied facies are classified into eight reservoir rock types (RRT) with distinct reservoir qualities. Dolomitization has played a major role in reservoir quality enhancement, whereas anhydritization, carbonate cementation, and compaction have damaged the pore throat network. Distribution of the recognized RRTs in time and space are discussed within the context of a sequence stratigraphic framework. 相似文献
50.
《Comptes Rendus Geoscience》2014,346(1-2):20-27
Subfossil tree trunks deposits are common in large rivers, but their status as a source for dating alluvial sequences and palaeoenvironmental studies is still discussed. Particularly their origin and the process(es) of deposition as well as a possible remobilization were pointed as a limit to their use to document river alluvial changes. In this work we report the discovery of the largest subfossil trunks deposits in the Garonne valley. These new data are compared to the previous ones. A set of 17 tree trunks and more than 300 smaller wood fragments were collected. The xylologic study shows the prevalence of Quercus and a single occurrence of Ulmus. These two hardwood species are commonly associated with riparian forest. The 14C dating carried out on seven trunks and a single branch of Quercus on the outermost identified growth rings, indicates age ranging from 8400–8000 cal. BP for the oldest fragment (bough) to 4300–4000 cal. BP for the most recent tree trunk. Radiocarbon ages of the trunks are aggregated into two main periods: 5300–5600 cal. BP (four trunks) and 4300–4000 cal. BP (three trunks). The radiocarbon (charcoal) dating of the top of the alluvial sequence overlaying the trunks gives an age between 1965–1820 and 1570–1810 cal. BP, i.e. between the 2nd and the 5th c. AD. In addition, the discovery of two unpublished subfossil tree trunks deposits in Finhan are reported (six trunks). At the light of these results, we discuss previously proposed models for the Garonne floodplain building. 相似文献