首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   10篇
  国内免费   5篇
大气科学   2篇
地球物理   13篇
地质学   25篇
海洋学   23篇
综合类   4篇
自然地理   7篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有74条查询结果,搜索用时 46 毫秒
31.
The Upper Permian Dalan Formation and the Lower Triassic Kangan Formation in the Persian Gulf area are mainly composed of shallow marine facies limestone and dolomite. Two subsurface-cored intervals were investigated in order to understand the original mineralogy and paleoceanic conditions. The decreasing trend of Sr concentration in these deposits shows that aragonite was precipitated during the Late Permian and then gradually changed to calcite toward the Permian–Triassic boundary (PTB). The dissolution rate of aragonite decreased from 60 m below the PTB toward the boundary, with the only exception at 10 m below the Permian-Triassic Boundary (PTB) due to the Permian–Triassic unconformity in this region. The increasing trend of Mg/Ca ratio in a global scale at the end-Permian time shows that the interpreted variation of mineralogy does not result from the change of this ratio. The increasing pCO2 and decreasing pH are considered to be the main controlling factors. The increase of Ca2+ at the end-Permian time due to the input of meteoric waters is too little to fully compensate this effect. A local maximum of the Si content just at the PTB confirms the input of runoff waters.  相似文献   
32.
This research has identified areas located in the northern coastline of the Persian Gulf in the south of Iran, as strategic and ecological sites, based on tourism potential assessing criteria. To this end coastal limits were identified by satellite imagery in terms of shorelines and the maximum extent of water approach into the land and taking into consideration the characteristics of the nearby coastal villages. The studied region was then compared to similar international criteria and experiences. The original criteria were then divided into three main and four sub criteria. The Kangan region was found to have a potential for tourism industry according to the mentioned criteria. Naiband Gulf with a score of 20 was ranked first followed by Asalouyeh with a score of 18 and finally Taheri and Kangan Ports with scores of 16 and 15, respectively. With a high tourism industry potential in the studied region the necessity of ecotourism quality enhancement and environmental management planning for the northern shoreline of the Persian Gulf becomes of vital importance.  相似文献   
33.
This study examined two shallow‐water, offshore oil facilities and their surroundings in the Umm Al Dalkh and Zakum oilfields [United Arab Emirates, Persian (Arabian) Gulf]. The focus was on sediment contamination levels and the detection of disturbance based on two representative invertebrate components of the benthos: molluscs and polychaetes. We tested the hypothesis that significant disturbance to the community has occurred, by examining whether distance from the platform or variation in contaminants explains among‐site variation in the composition of benthic communities. Moreover, we also tested the hypothesis that organic enrichment because of oil input has modified the feeding guild structure by examining whether the relative abundances of filter‐feeders, deposit‐feeders and omnivores are correlated with distance from the platform or with contamination by hydrocarbons. The contamination levels and their spatial distribution in the sediments differed significantly between the two fields, as did their mollusc and polychaete communities. The within‐field variability, however, was much lower: no clear structuring of contamination values and species composition and abundance was detectable in relation to distance from the oil platform. Contamination levels were low, often below detection levels or international guideline values. Variation in contaminant concentrations did not explain variation in taxonomic composition and abundance. The relative abundance of the above‐mentioned feeding guilds did not correlate with either distance from the platform or with contaminant concentrations. These patterns may reflect the long time that has elapsed since drilling (15–20 years), which appears to have allowed contaminants to disperse and degrade and assemblages to recover from the impact, if indeed such a disturbance ever occurred. In contrast to low values of barium and total petroleum hydrocarbons, associated with well drilling, some metals were at their highest concentrations beneath the central platforms. This suggests that production‐related activities (including platform cleaning and maintenance) are currently a more relevant contamination source.  相似文献   
34.
The northwestern part of the Persian Gulf is one of the most prominent hydrocarbon exploration and production areas. Oilfields are located in structural highs formed around the Cenomanian depression known as Binak Trough. To evaluate the highly variable source rock maturity, timing of hydrocarbon generation as well as migration pattern and the remaining hydrocarbon potential of the early Cretaceous source rocks, burial and thermal histories were constructed for four production wells and one pseudo well. In addition two cross sections covering the depression and the structural highs around the trough were investigated by 2D basin modeling to provide a better regional overview on basin evolution.The modeling results indicate that whereas the Cretaceous source rocks are immature or early mature at the location of oilfields, they reached sufficient maturity to generate and expel considerable amounts of hydrocarbons in the Binak depression. The main phase of oil generation and expulsion from the Cretaceous source rocks is relatively recent and thus highly favorable for the conservation of hydrocarbon accumulations. Trap charging occurred through the late Miocene to Pliocene after the Zagros folding. 2D models predict that the Albian source rock still has significant hydrocarbon generation potential whereas the lower Neocomian source rock has reached already a high transformation ratio within the deep kitchen area. Oil migration occurs in both lateral and vertical directions. This migration pattern could explain the distribution of identified oil families in the northwestern part of the Persian Gulf.  相似文献   
35.
Brush removal is widely practiced as a tool for increasing groundwater recharge, but its efficacy depends greatly on the way in which the removed species interact with the hydrological system relative to the vegetation replacing it. We examined the effects of Ashe juniper removal in the recharge zone of the Edwards Aquifer, Texas, USA, a karst aquifer. The study was conducted in an Ashe juniper (Juniperus ashei)–live oak (Quercus fusiformis) woodland on a hill slope composed of rocky, shallow soils over fractured limestone bedrock. Ashe juniper is a native species that has been encroaching grasslands and savannas over the past century. In September 2008, a plot was cleared of 90% of its juniper trees. Tree transpiration, predawn water potentials and vegetation cover across the cleared plot and an adjacent reference site were measured from May 2009 to December 2011. Stand‐level tree transpiration from May 2009 to March 2010 was diminished by a severe summer drought in 2009, from which trees were slow to recover. Subsequently, tree transpiration was 5–10× higher in the woodland compared to the clearing. For all of 2011, also a drought year, tree transpiration in the woodland exceeded precipitation inputs, indicating a high capacity for water storage at the study site. However, site differences for oak trees were generally larger than for juniper trees. While juniper removal accounted for a 431 mm year?1 difference in tree transpiration between sites, vegetation cover in the clearing increased from 42% to 90% over two years, suggesting that understory growth was increasingly compensating for the loss of juniper transpiration. We conclude that the removal of a relatively shallow‐rooted tree, when replaced with herbaceous vegetation and low shrubs, has little effect on deep recharge. By contrast, successive years of precipitation extremes may be more effective increasing recharge by lowering the water transport capacity of trees in the aftermath of severe drought. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
37.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
38.
Accurate sea-level reconstruction is critical in understanding the drivers of coastal evolution. Inliers of shallow marine limestone and aeolianite are exposed as zeugen (carbonate-capped erosional remnants) on the southern coast of the Arabian/Persian Gulf. These have generally been accepted as evidence of a eustatically driven, last-interglacial relative sea-level highstand preceded by a penultimate glacial-age lowstand. Instead, recent optically stimulated luminescence (OSL) dating suggests a last glacial age for these deposits, requiring > 100 m of uplift since the last glacial maximum in order to keep pace with eustatic sea-level rise and implying the need for a wholesale revision of tectonic, stratigraphic and sea-level histories of the Gulf. These two hypotheses have radically different implications for regional neotectonics and land–sea distribution histories. Here we test these hypotheses using OSL dating of the zeugen formations. These new ages are remarkably consistent with earlier interpretations of the formations being last interglacial or older in age, showing that tectonic movements are negligible and eustatic sea-level variations are responsible for local sea-level changes in the Gulf. The cause of the large age differences between recent studies is unclear, although it appears related to large differences in the measured accumulated dose in different OSL samples.  相似文献   
39.
Permo-Triassic carbonate successions host some of the largest oil and gas reserves in the Arabian Plate, including the world's largest gas reservoirs of the Upper Dalan and the Kangan formations in the South Pars Gas Field, Persian Gulf Basin. Both formations are stratigraphically equivalent to the Upper Khuff Formation which has been long recognized as a major oil and gas reservoir in the Arabian Peninsula. The Permian Upper Dalan Formation is composed mainly of mixed carbonate-evaporite sequences that formed on a laterally continuous homoclinal carbonate ramp with significant variations in reservoir heterogeneity and quality. They can be grouped in 18 microfacies. High reservoir qualities are found within high-energy shoal environments with a tendency of the best reservoir quality to occur towards the basin in a mid-ramp setting. In contrast, low-energy tidal flat environments exhibit the poorest reservoir quality. Reservoir quality from lagoonal environments is diverse. Diagenesis has significantly affected reservoir properties by both enhancing and destroying original porosity and permeability. Bivariate plots of porosity and permeability values, combined with thin section petrography indicate that pore-filling “pervasive” and poikilotopic anhydrite cements had the greatest negative impact on the reservoir quality whereas dolomitization and dissolution of grains and cements played the most positive role. Two third-order sequence stratigraphic cycles link lithologies and depositional environments to sea-level fluctuations. HSTs are associated with better reservoir characteristics than TSTs.  相似文献   
40.
National Persian Gulf Bridge is a communication route between Bandar Abbas port and Qeshm Island located on the southern border of Iran. This causeway has important role for facilitating the transportation system between Qeshm Island and mainland, i.e., Bandar Abbas. Based on geotechnical and geological site investigation records, the bridge is located on the deposits with high seismic possibility and subsequently significant dynamic loading. Therefore, adequate substructure design of this bridge as an offshore project is realized as a major requirement. The geophysical and geotechnical investigations have been done to obtain the subsoil characteristics of the project site. For this purpose, 18 boreholes have been performed to do in situ tests and extract samples for laboratory testings. Data synthesis indicates that in the zones close to Qeshm Island and in the deeper parts of the sea, the strata is made of clay with loose sands and some depths, with silty sands. Hence, instability issues, including the low bearing capacity and the high differential settlement, are significant aspects in analysis and design of substructure for this project. Also, in this paper, the subsoil conditions have been studied from in situ tests such as standard penetration test (SPT) and cone penetration test (CPT) results in order to achieve an appropriate foundation system. Moreover, the necessity of the ground improvement of the site has been investigated to propose an efficient technique for safe and secure construction. Based on the analysis and methods screened, the vibro-replacement method is considered as a suitable and efficient ground improvement method for this project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号