首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   13篇
  国内免费   18篇
大气科学   8篇
地球物理   26篇
地质学   75篇
海洋学   7篇
天文学   3篇
综合类   6篇
自然地理   32篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   12篇
  2010年   4篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   15篇
  2005年   8篇
  2004年   2篇
  2003年   9篇
  2002年   2篇
  1999年   1篇
  1997年   3篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1975年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
71.
青藏公路沿线热喀斯特湖分布特征及其热效应研究   总被引:1,自引:1,他引:0  
热喀斯特湖的出现和发育是多年冻土变暖的指示器,研究热喀斯特湖发育及其热效应是应对青藏高原气候变化和人类活动诱发冻土灾害的基础工作.基于SPOT-5卫星影像资料,在ArcGIS平台下解译遥感影像,获取了青藏公路沿线楚玛尔河至风火山段热喀斯特湖的数量和分布特征,这些热喀斯特湖以楚玛尔河高平原和北麓河盆地为主要分布区,且80%发育于高含冰量多年冻土区.热喀斯特湖通过竖向和侧向2种传热方式影响多年冻土,竖向传热会造成其下部多年冻土融穿,侧向传热会造成湖岸多年冻土增温,扩大热影响范围.通过北麓河地区一典型热喀斯特湖的数值计算,湖全年都在向湖岸放热.当热喀斯特湖离路基较近,将会对公路产生潜在或者直接的危害,其侧向热侵蚀往往会导致冻土路基温度升高,诱发路基病害.  相似文献   
72.
探地雷达:浅表地球物理科学技术中的重要工具   总被引:10,自引:2,他引:8       下载免费PDF全文
探地雷达(GPR)是浅表地球物理科学技术中的一项重要手段.其重要性体现在它的应用广泛性和有效性.在工程检测、环境保护、文物考古、灾害救援、反恐安检、资源勘探、水文水利等科学技术领域中探地雷达都在发挥着其他手段无法取代的重要作用.关于探地雷达发展历史、基本系统及原理、信号处理与成像等方面的综述性文章已经很多.本文将重点评述作为浅表地球物理观测技术重要手段的探地雷达在几个基础地学与工程技术领域中的应用.这些方面包括沙漠中高大沙丘的内部结构与形成机理,永久冻土的现状探测与演化预测,民用基础设施(公路、桥梁、大坝、堤防)内部或地基内空洞及软弱带的检测,以及地震灾害现场生命探测与救援.本文还将用一定篇幅评述探地雷达技术的变异形式(如钻孔雷达、探月雷达).评述将结合观测实例,尤其是在中国大陆的实例.最后将就探地雷达技术现存的问题及发展方向提出个人见解.需要强调的是,尽管本文以探地雷达的科研应用为主题,浅表地球物理科技成果在各个领域的成功应用绝对不可能倚赖任何单一手段或方法.所有成功的实例都证明一定要强调某一方法为主,其他手段为辅,多手段、多方法的有效配合,才有可能最大程度的减小探测结果的非唯一性,提高准确度和精确度.  相似文献   
73.
The presence of a wedge of offshore permafrost on the shelf of the Canadian Beaufort Sea has been previously recognized and the consequence of a prolonged occurrence of such permafrost is the possibility of an underlying gas hydrate regime. We present the first evidence for wide-spread occurrences of gas hydrates across the shelf in water depths of 60–100 m using 3D and 2D multichannel seismic (MCS) data. A reflection with a polarity opposite to the seafloor was identified ∼1000 m below the seafloor that mimics some of the bottom-simulating reflections (BSRs) in marine gas hydrate regimes. However, the reflection is not truly bottom-simulating, as its depth is controlled by offshore permafrost. The depth of the reflection decreases with increasing water depth, as predicted from thermal modeling of the late Wisconsin transgression. The reflection crosscuts strata and defines a zone of enhanced reflectivity beneath it, which originates from free gas accumulated at the phase boundary over time as permafrost and associated gas hydrate stability zones thin in response to the transgression. The wide-spread gas hydrate occurrence beneath permafrost has implications on the region including drilling hazards associated with the presence of free gas, possible overpressure, lateral migration of fluids and expulsion at the seafloor. In contrast to the permafrost-associated gas hydrates, a deep-water marine BSR was also identified on MCS profiles. The MCS data show a polarity-reversed seismic reflection associated with a low-velocity zone beneath it. The seismic data coverage in the southern Beaufort Sea shows that the deep-water marine BSR is not uniformly present across the entire region. The regional discrepancy of the BSR occurrence between the US Alaska portion and the Mackenzie Delta region may be a result of high sedimentation rates expected for the central Mackenzie delta and high abundance of mass-transport deposits that prohibit gas to accumulate within and beneath the gas hydrate stability zone.  相似文献   
74.
Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000 km2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21 m, with a mean height of 4.6 m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18 km− 2) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (< 200 m diameter), gently to moderately sloping (< 30°), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5 m). However, 57 pingos stand higher than 10 m, 26 have a maximum slope greater than 30°, and 42 are larger than 200 m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2 m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars.  相似文献   
75.
The first deep permafrost boreholes (>10 m) ever drilled in Scandinavia for climatic studies constitute part of a transect of deep mountain permafrost boreholes through the mountains of Europe established under the EU PACE (Permafrost and Climate in Europe) Project. In Scandinavia, PACE boreholes are located at Juvvasshøe, southern Norway, Tarfalaryggen in northern Sweden, and northernmost in the transect at Janssonhaugen, western Svalbard. This paper outlines the aims and objectives of the PACE programme, and describes in detail the Svalbard and Scandinavian permafrost boreholes.  相似文献   
76.

A regional model was used to draw the permafrost distribution in the 200 km 2 of the Bagnes-Hérémence area (Western Swiss Alps). The model is based on the fact that permafrost distribution depends mainly on altitude and orientation and that the minimal altitude of active/inactive rock glaciers can be used as an indicator of the lower limit of discontinuous permafrost. The lower limit of relict rock glaciers is also used as an indicator of past distribution of permafrost. An inventory of rock glaciers was therefore made in the study area. The lower limit of permafrost during the Younger Dryas was determined by comparing the position of relict rock glaciers and glacier extension during the Older Dryas. The model was then applied to four periods (Younger Dryas, Little Ice Age, current period and future) in order to show the temporal evolution of permafrost distribution and glacier extension.  相似文献   
77.
78.
Engineering geological problems of thaw-settlement and frost-heave occur frequently along the Qinghai–Xizang (Tibet) Highway (QXH) line and produce an adverse impact on roadbed stability. Eight monitoring sites were established along the QXH to investigate the engineering geological characteristics and environmental process of permafrost, including the upper and lower boundary of the active layer under the natural surface, the seasonal freeze–thaw depth under the asphalt pavement, the permafrost table temperature and roadbed stability. The investigation results show that the active layer thickness and permafrost table temperature under an asphalt pavement are higher than under a natural surface due to the absorption heat and reduced evaporation capability of the asphalt pavement. The implication for highway design and construction in permafrost areas are discussed.  相似文献   
79.
In the Zugspitze area (Bavarian Alps, Germany), permafrost conditions are present in limestone bedrock and in regolith. Distribution is strongly dependent on topography in the east–west oriented mountain crest with steep north- and south-facing slopes. Numerous structures mainly for tourist purposes (cable car and recreation buildings, ski-lift masts, rack-railway tunnel, tunnel with supply facilities) are situated in the area, and several of them are placed on ground with permafrost. Results from a temperature measurement programme and distribution modelling show that for some of these constructions, the effects of permafrost degradation have to be considered in terms of stability of the foundations.The permafrost limit is close to the summit crest, and therefore, stability evaluations for the constructions in this area have to bear in mind the possible warming or even melting of ice within the bedrock crevasses caused by climate warming. Stability of the foundations as well as stability of rock walls in this area will probably be affected by a shifting of the permafrost limit. Constructions in the Zugspitzplatt area are already affected by the melting ground ice, and stabilizing measures have to be evaluated for several foundations where subsidence is likely to occur.Besides the local results, the study provides for the first time data on permafrost distribution in the northern Alpine margin based on standard methods of BTS measurements and numerical modelling.  相似文献   
80.
青藏高原东部河川径流特征   总被引:6,自引:2,他引:6  
杨针娘  胡鸣高 《冰川冻土》1990,12(3):219-226
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号