首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   13篇
  国内免费   18篇
大气科学   8篇
地球物理   26篇
地质学   75篇
海洋学   7篇
天文学   3篇
综合类   6篇
自然地理   32篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   12篇
  2010年   4篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   15篇
  2005年   8篇
  2004年   2篇
  2003年   9篇
  2002年   2篇
  1999年   1篇
  1997年   3篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1975年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
101.
Rodent middens from ice-rich loess deposits are important new paleoenvironmental archives for Eastern Beringia. Plant macrofossils recovered from three middens associated with Dawson tephra (ca. 24,000 14C yr B.P.) at two sites in Yukon Territory include diverse graminoids, forbs, and mosses. These data suggest substantial local scale floristic and habitat diversity in valley settings, including steppe-tundra on well-drained soils, moist streamside meadows, and hydric habitats. Fossil arctic ground squirrel burrows and nesting sites indicate that permafrost active layers were thicker during Pleistocene glacial periods than at present on north-facing slopes.  相似文献   
102.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   
103.
青藏高原多年冻土区的地下水是高原特定的地质地理环境下的产物,多年冻土的存在控制地下水的形成和分布,新构造运动是影响区域水文地质条件的主导因素,地下水和多年冻土相互作用、相互制约,导致区域水文地质条件复杂化。  相似文献   
104.
A Weichselian Late Pleniglacial fluvio-aeolian deposit has been investigated in the southern Netherlands. Three main structural lineaments have been distinguished: (1) very small, vertical platy structures (microjoints), in a parallel and a columnar configuration; (2) large joints and normal faults with minor displacement (‘Grubbenvorst type’), arranged in a conjugate fault-system; (3) large joints and normal faults (‘wedge-type’), located adjacent to ice-wedge casts. Since clay is absent, the occurrence of the vertical platy structures cannot be attributed to desiccation cracking. The vertical platy structures are interpreted as the result of thermal contraction cracking of a relatively thin layer, due to a sudden temperature drop. The large joints and normal faults of the Grubbenvorst type are the result of failure of the sediment due to the melting of the permafrost in the Late Pleniglacial, just before the formation of the Beuningen Gravel Bed. In other areas large periglacial convolutions have been formed during the same period. The normal faults and joints of the wedge type are more generally known. They are the result of failure of the sediment adjacent to a melting ice wedge.  相似文献   
105.
近数十年来青藏公路沿线多年冻土变化   总被引:34,自引:1,他引:34  
青藏高原70年代比60年代的平均气温升高0.2~0.4℃,气候转暖导致目前公路沿线浅层多年冻土多呈退化趋势。在南、北界附近的岛状冻土区内,年平均地温升高0.2~0.3℃,多年冻土层减薄3~5m或完全消失;在连续冻土区内,年平均地温升高0.1~0.2℃。多年冻土层温度和厚度变化要滞后于气候变化,滞后时间和影响深度与冻土层的岩性、含水量有关。近数十年的气候变化对20m深范围内多年冻土温度和厚度产生较明显的影响。  相似文献   
106.
Canadian examples suggest that karst landforms may be divided into eight types in terms of their temporal relationships to the record of repeated Quaternary glaciations. Two types are postglacial, two are subglacial, one type occurs where glacial features are adapted to karstic drainage, and three types display sequences of karstic and glacial action. Glacier effects upon karst landforms and their underlying aquifers display the gamut of possibilities. They may destroy, inhibit, preserve, or stimulate karst development. Where continuous permafrost is maintained when covered by glacier ice, postglacial karst is limited to the active layer epikarst. Where permafrost is thawed beneath ice or during deglaciation there are a variety of postglacial karst developments, depending in part upon climate and in part upon local lithologic and relief conditions.  相似文献   
107.
《China Geology》2022,5(3):475-509
Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community. As the world’s third pole, the global warming amplifier, and the starting region of China’s climate change, the Qinghai-Tibet Plateau is extremely sensitive to climate change. The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates (NGHs) resources. Under the background of global warming, whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community. Given this, this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau. Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau, this study investigated the changes in the response of the NGHs to global warming, aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau. A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau. Over the past decades, the increase in the mean annual air temperature of the plateau was increasingly high and more recently. Specifically, the mean annual air temperature of the plateau changed at a rate of approximately 0.308–0.420°C/10a and increased by approximately 1.54–2.10°C in the past decades. Moreover, the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155–1.575°C and the permafrost area decreased by approximately 0.34×106 km2 from about 1.4×106 km2 to 1.06×106 km2 in the past decades. As indicated by simulated calculation results, the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29–39 m in the past 50 years, with the equivalent of (1.69 – 2.27)×1010–(1.12–1.51)×1012 m3 of methane (CH4) being released due to NGHs dissociation. It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m, and dissociated and released NGHs will be the equivalent of (1.34–88.8)×1010 m3 and (1.57–104)×1010 m3 of CH4, respectively by 2030 and 2050. Considering the positive feedback mechanism of NGHs on global warming and the fact that CH4 has a higher greenhouse effect than carbon dioxide, the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH4 into the atmosphere, which is an important trend of NGHs under the background of global warming. Therefore, the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality. Accordingly, this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau, accelerate research on the techniques and equipment for NGHs extraction, storage, and transportation, and exploit the permafrost-associated NGHs while thawing them. The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect, thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.©2022 China Geology Editorial Office.  相似文献   
108.
Results are presented from eight scaled centrifuge modelling experiments designed to investigate mass movement processes on thawing ice-rich slopes. Four pairs of simple planar slope models were constructed, one in each pair being of sufficient gradient to promote slope failure during soil thaw and the second having a gradient below the threshold for instability. Four frost susceptible soils were used, three were normally consolidated and had different clay contents (2%, 12% and 20%) and the fourth comprised the 20% clay soil, but was over consolidated prior to model testing. Modelling protocols included freezing from the surface downwards under an open hydraulic system, and thawing from the surface downwards under an enhanced gravitational field within the geotechnical centrifuge, thereby utilising scaling laws to simulate correct prototype self weight stresses during thaw. Slopes below the stability threshold gradient were subjected to between 2 and 4 cycles of freezing and thawing, simulating annual cycles. Those above the stability threshold were subjected to only one cycle, since they failed during the first thaw phase. Thermal conditions, pore water pressures, surface movements, and profiles of displacement are reported. Measured pore pressures are used in slope stability analyses based on a simple planar infinite slope model. Profiles of solifluction shear strain and mechanisms of slope failure are both shown to be sensitive to small changes in soil properties, particularly clay content and stress history. In all cases, pore pressures rose rapidly immediately following thaw, remained below the threshold for failure in low gradient models, but exceeding the threshold to trigger landslides on steeper slopes. Upward seepage of melt water away from the thaw front contributed to loss of shear strength. Mechanisms of slope failure differed between test soils, ranging from mudflow in non-cohesive silt to active layer detachment sliding in over consolidated silt–clay. During solifluction, shear strain was greatest at the surface in non-cohesive silt and decreased rapidly with depth, but in test soils containing clay, the zone of maximum shear strain was located lower in the displacement profiles.  相似文献   
109.
Wisconsin's Central Sand Plain east of the Wisconsin River is composed of eolian sand forming high-relief dunes surrounded by sand sheets and scattered low-relief dunes. To establish a maximum age for dune formation, three samples for optical dating were taken from glacial Lake Wisconsin lacustrine sediment that underlies eolian sand. These age estimates range from 19.3 to 13.6ka. Age estimates taken from within or at the base of the dunes range from 14.0 to 10.6ka. Samples taken from < 2m of the ground surface were slightly younger, indicating dunes were stabilized between 11.8 and 5.5ka. The younger ages near the surface of some dunes were most likely the result of pedoturbation or localized problems with applying the optical dating method. The majority of the optical age estimates from dunes (18 of 21) indicated that most of the dunes were active between 14 and 10ka and that most dune activity ended by 10ka. These ages suggest that localized activity on dune crests may have occurred in the Holocene but would have been limited to < 1m of sand accumulation. The timing of dune activity and the lack of any significant Holocene reactivation suggest that dune activation in this setting cannot be attributed solely to changes in aridity. Instead, we attribute dune formation to changes in sediment availability from either sand inputs from the Wisconsin River or the melting of permafrost.  相似文献   
110.
罗毅  田云锋  张苏  张景发 《地震》2020,40(3):179-188
由于自然环境的限制, 青藏高原的大地测量网络十分稀疏, 不能满足区域地壳运动监测的需求。干涉合成孔径雷达(InSAR)是非接触监测地壳运动的一种重要方式, 但在高原上受到冻土的影响。本文基于2014~2018年的Sentinel-1卫星C波段雷达数据, 采用InSAR时序技术分析了冻土形变的时空特征。针对InSAR位移时间序列, 采用空间滤波去除了大气延迟、 地形效应等局部公共误差, 提高了时间序列的信噪比。结果显示, 青藏高原的冻土运动可分为差异较大的两类: 在大部分冻土区域, 与周边高山(基岩)区域相比, 冻土地区显示类似的季节波动或一定的长期沉降; 在部分冻土地区存在异常快速下沉区域, 例如在西藏中部布若错湖西南侧的沉积盆地内, 存在一个直径约2 km的漏斗型沉降区, LOS向沉降速率可达约10±2.1 mm/a。构造运动造就了高原上大量沿断裂线分布的河流、 湖泊, 河床和沉积盆地等广泛分布着冻土, 给准确分析构造形变带来很大挑战, 本文所得的结果可作为区分冻土运动与构造变形的一种有效判据, 也有益于研究高原冻土的物理特性及变形机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号