首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   16篇
  国内免费   37篇
测绘学   3篇
大气科学   17篇
地球物理   56篇
地质学   34篇
海洋学   80篇
综合类   7篇
自然地理   94篇
  2022年   6篇
  2021年   5篇
  2020年   8篇
  2019年   14篇
  2018年   5篇
  2017年   10篇
  2016年   6篇
  2015年   9篇
  2014年   15篇
  2013年   14篇
  2012年   12篇
  2011年   20篇
  2010年   12篇
  2009年   21篇
  2008年   15篇
  2007年   19篇
  2006年   20篇
  2005年   13篇
  2004年   12篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有291条查询结果,搜索用时 515 毫秒
181.
Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L−1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to ~0.4 µmol L−1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L−1 O2 h−1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L−1 O2 h−1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L−1.  相似文献   
182.
Drastic changes in the composition and physiognomy of riparian vegetation, such as the conversion of grassland to forest, are expected to alter interactions among light availability, primary producers and herbivores. Our aim was to examine in laboratory the influence of a ubiquitous grazer on periphyton grown in a grassland unshaded stream (reference) vs. periphyton from a nearby pine afforested stream. Besides, we evaluated how the community responds to the removal of grazing. Given that grassland streams are exposed to higher light intensity and grazers are more abundant compared to afforested streams, we proposed that if biofilm grown in the afforested stream are dominated by grazing-vulnerable algal species, grazing pressure by Helicopsyche sp. should be stronger. In addition, if biofilm from the afforested stream has low quality or is less abundant as food for consumers, the effects of Helicopsyche sp. may be stronger or weaker depending on their feeding decisions. Helicopsyche sp. caused a decrease in richness and diversity in periphyton grown in the grassland stream and its net grazing effect on chlorophyll a (Chl a) was higher. Algal community composition from grassland stream was strongly changed after grazing, with a decrease in the proportion of overstory algae. In contrast, algal community structure of periphyton from the afforested stream was neither affected by grazing nor by grazing exclusion. Helicopsyche sp. produced significant changes in a short time in structural attributes of algal communities, mainly in periphyton from the grassland stream suggesting that herbivory, as a functional factor, is diminished following afforestation.  相似文献   
183.
扎龙湿地水旱交错区土壤呼吸研究   总被引:1,自引:0,他引:1       下载免费PDF全文
湿地作为陆地生态系统的重要组成部分,被认为是重要的碳汇。近几十年来,湿地围垦造成土壤有机碳损失严重。全球湿地土壤的CO2温室气体排放已经相当于全球总排放的1/10。研究湿地土地利用类型的改变对土壤呼吸的影响,将有利于了解湿地碳循环,计算碳收支,制定相应对策缓解碳排放。利用LI-8100A动态密闭气室测量法,于2011年...  相似文献   
184.
DDT(dichloro-diphenyl-trichloroethane) as a type of organochlorine pesticides, is an important component of pesticides pollution whose impact on the marine ecosystem is urgently to be evaluated. To investigate the biological effects of DDT on the marine ecosystem, copepods being the main contributor of secondary productivity in the marine ecosystem, were selected as target animals. The influence of DDT on the feeding, respiration, survival, and reproduction of Sinocalanus tenellus(S. tenellus) was analyzed and the antioxidant enzymes activities in the individuals were measured under different exposure concentrations of DDT. The 48 h median lethal concentration(LC50) and 96 h LC50 of DDT to S. tenellus were 5.44 and 2.50 μg/dm3, respectively. The filtration rates, grazing rates, and respiration of S. tenellus decreased apparently with increased DDT concentrations. Under lower concentration(625 ng/dm3) of DDT, the activities of the antioxidant enzymes, including superoxide dismutase and catalase in the animals increased significantly compared with those in the animals without any exposure to DDT, which suggested that the antioxidant enzymes can protect the animals from oxidative damage. However, the activity of the antioxidant enzyme decreased when the animals were exposed to higher concentration(1 250–2 500 ng/dm3) of DDT. The survival rate of both females and males was reduced when they were exposed to DDT less than 250 ng/dm3, but females showed higher survival rate than males when they are under the same concentration. The hatching ratio and the egg diameters of S. tenellus decreased significantly when they were exposed to DDT with a concentration of 25 and 250 ng/dm3, however, the cumulative egg production did not show any significant variation when the animals were exposed to the above DDT concentration. These data in the preset study suggested that exposure to DDT can cause the variation of the species composition of copepods, and further affect the marine ecosystem.  相似文献   
185.
Microbial plankton metabolism was examined during summer 2010 in sea ice-influenced waters of the Fram Strait, eastern Arctic Ocean. Rates of gross primary production and community respiration were tightly coupled over a wide range of values (33±3–143±6 and 20±3–126±6 mmol O2 m−2  −1, respectively) leading to a prevalence of positive net community production. The high variability in community respiration, similar to that of gross primary production, suggests that heterotrophic metabolism may exhibit a significant response to environmental change. Bacterial respiration was assessed at similar time scales to bacterial production measurements, by determining the in vivo INT reduction capacity without pre-filtering the community. Bacteria seem to play a major role in total community respiration, contributing between 5% and 61% of total community respiration, indicating that a high fraction of the organic carbon in Arctic planktonic food webs could flow through these microbes.  相似文献   
186.
《Polar Science》2014,8(2):146-155
The Boreal black spruce forest is highly susceptible to wildfire, and postfire changes in soil temperature and substrates have the potential to shift large areas of such an ecosystem from a net sink to a net source of carbon. In this paper, we examine CO2 exchange rates (e.g., NPP and Re) in juniper haircap moss (Polytrichum juniperinum) and microbial respiration in no-vegetation conditions using an automated chamber system in a five-year burned black spruce forest in interior Alaska during the fall season of 2009. Mean ± standard deviation microbial respiration and NEP (net ecosystem productivity) of juniper haircap moss were 0.27 ± 0.13 and 0.28 ± 0.38 gCO2/m2/hr, respectively. CO2 exchange rates and microbial respiration showed temporal variations following fluctuation in air temperature during the fall season, suggesting the temperature sensitivity of juniper haircap moss and soil microbes after fire. During the 45-day fall period, mean NEP of P. juniperinum moss was 0.49 ± 0.28 MgC/ha following the five-year-old forest fire. On the other hand, simulated microbial respiration normalized to a 10 °C temperature might be stimulated by as much as 0.40 ± 0.23 MgC/ha. These findings demonstrate that the fire-pioneer species juniper haircap moss is a net C sink in the burned black spruce forest of interior Alaska.  相似文献   
187.
 在科尔沁沙地测定分析了流动沙丘栽植樟子松林23 a后的土壤碳截存作用,以及林地和流动沙丘土壤呼吸对干湿变化的响应。结果表明:①流动沙丘造林后土壤容重减小,土壤颗粒中极细沙和黏粉粒含量显著增加;②樟子松林地0~5 cm和5~15 cm层土壤有机碳截存量分别为221.8 g·m-2和113.9 g·m-2,截存速率分别为9.64 g·m-2·a-1和4.95 g·m-2·a-1;CaCO3-C截存量分别为4.0 g·m-2和2.5 g·m-2, 截存速率分别为0.17 g·m-2·a-1和0.11 g·m-2·a-1;③干旱条件下土壤呼吸随气温的升高呈现指数减小;无论是干旱还是降雨后,林地土壤呼吸速率均显著高于流动沙丘;④降雨刺激后土壤呼吸显著增加,林地增加的幅度显著高于流动沙丘;林地地表凋落物去除后土壤呼吸速率下降,并且在降雨后下降更为明显。  相似文献   
188.
 采用开路式自动土壤碳通量测量系统(LI-8100)测定了准噶尔盆地荒漠梭梭群落生长季的土壤呼吸速率,并分析了温度和土壤水分对土壤呼吸的影响,结果表明:土壤CO2释放速率有明显的日变化和季节动态,日最大排放速率出现在13:00—15:00时,最小排放速率在8:00时。土壤CO2释放速率日变幅最大值为0.90 μmol·m-2·s-1、最小值为0.24 μmol·m-2·s-1、平均速率是(0.548±0.076)μmol·m-2·s-1;土壤呼吸作用在生长季中的动态呈单峰曲线,顺序为6月>7月>8月>9月>5月>10月。相关性分析表明,土壤呼吸速率与气温、地表温度和5 cm、10 cm、15 cm、20 cm、25 cm、30 cm、35 cm、40 cm、50 cm层土壤温度呈极显著和显著正相关关系,土壤呼吸速率与地表温度间的线性关系为Y=0.017X+0.033,(R2=0.566, P<0.001),并得出Q10值为1.65。土壤含水量与土壤呼吸速率间的相关性不显著。  相似文献   
189.
Seasonal benthic respiration rate observations from Chesapeake Bay and the Patuxent estuary have been used to determine the benthic decay coefficient. Non-linear parameter estimation procedures were employed to delineate the optimal values and associated confidence intervals for the microbial decay and macrofaunal respiration parameters. The results demonstrate that microbial decay of organic detritus on the bottom is a long-term process with a yearly averaged decay coefficient of around k = 0·0056 day?1 (τ = 1k = 180 day).  相似文献   
190.
长白山天然次生白桦林土壤CO_2释放通量研究   总被引:2,自引:0,他引:2  
利用静态箱/气相色谱法测定了长白山天然次生白桦林土壤二氧化碳释放通量.在生长季节的春、夏、秋三个时间段对白桦林土壤CO2释放通量测定的结果表明:白桦林土壤呼吸的日变化和不同生长季节的变化均与温度的变化有明显的相关性.白昼的土壤CO2的释放通量始终高于夜晚,但白昼土壤CO2释放通量的峰值与气温的峰值相比具有一定的滞后性.土壤CO2释放通量夏季明显高于春秋两季,凋落物层对土壤CO2释放具有一定的影响,夏季去除凋落物层后土壤CO2释放通量高于未除凋落物层时CO2释放通量,而春秋两季则出现相反的结果.通过相关分析发现,有凋落物覆盖的土壤CO2释放通量与地下5cm温度相关性最好,而去除凋落物后土壤CO2释放通量则与地表温度相关性最高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号