首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2812篇
  免费   378篇
  国内免费   628篇
测绘学   76篇
大气科学   368篇
地球物理   651篇
地质学   1201篇
海洋学   875篇
天文学   53篇
综合类   94篇
自然地理   500篇
  2024年   16篇
  2023年   67篇
  2022年   109篇
  2021年   109篇
  2020年   139篇
  2019年   158篇
  2018年   130篇
  2017年   146篇
  2016年   183篇
  2015年   171篇
  2014年   176篇
  2013年   214篇
  2012年   153篇
  2011年   151篇
  2010年   123篇
  2009年   169篇
  2008年   188篇
  2007年   201篇
  2006年   165篇
  2005年   147篇
  2004年   116篇
  2003年   87篇
  2002年   96篇
  2001年   73篇
  2000年   74篇
  1999年   71篇
  1998年   44篇
  1997年   53篇
  1996年   41篇
  1995年   35篇
  1994年   31篇
  1993年   20篇
  1992年   25篇
  1991年   28篇
  1990年   19篇
  1989年   18篇
  1988年   14篇
  1987年   6篇
  1986年   7篇
  1985年   10篇
  1984年   2篇
  1983年   7篇
  1982年   6篇
  1981年   8篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
排序方式: 共有3818条查询结果,搜索用时 15 毫秒
191.
Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.  相似文献   
192.
Investigation of a breakage probability model published by Vogel and Peukert [Vogel, L. and Peukert, W., 2004. Determination of material properties relevant to grinding by practicable labscale milling tests. Int. J. Miner. Process., 74S, 329–338.] has led to a modification of their model to describe the degree of impact breakage, t10. The modified model takes a form similar to the JKMRC prior art breakage model, but with particle size and breakage properties incorporated explicitly in the model.  相似文献   
193.
The formal stereological transformation equation for particle sieve size distribution from measurements in lower dimensional spaces is applied to laser diffractometer measurements. The transformation function for iron ore particles is measured experimentally, and modeled. The solution is tested against the measured transformation function data as well as synthetic composite distributions of the original sample. The natural size distribution of a sample taken from a grinding circuit stream was measured by a combination of standard sieving and cyclosizer, and the result is compared to the transformed size distribution calculated from laser diffractometer measurements. The stereological transformation technique performed well in all cases.  相似文献   
194.
The assessment of grain size distribution and plasticity of loose geological material, during in situ geological investigations, is not obvious. Visual appreciation allows an approximative quantification of the coarse granulometric fractions, but not of the fine ones. Field soils determination methods suggested until now, are visual and tactile tests leading to a very rough estimate, which is only qualitative and not very reproducible. The new proposed field test (GEOLEP method) allows a quick quantification of the fine fraction of loose material. It allows the determination of the sand fraction (fine and medium grained sands) as well as the methylene blue value of the samples. The necessary equipment to perform this test is light and compact and the time needed to analyze one sample is approximately 15 min. Thus it is also possible to carry out numerous measurements in one day. The calibrations were carried out on a selection of 13 natural samples, chosen for their representativeness of the typical alpine quaternary deposits. The results obtained with GEOLEP method are relevant compared with standardized laboratory tests; the obtained correlation indexes are of 73% for the comparison with laboratory stain test results and of 89% with a laboratory method using a similar procedure than the field test. The correlation we performed with Atterberg's limits tests shows that a rough approximation of plasticity index can also be obtained (R2 = 75%). This method thus brings a new tool which should allow taking into account the lithological factor (by some quantitative and representative variables) in a reliable way for the evaluation of landslide hazards.  相似文献   
195.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   
196.
Data taken with ten Cosmic Ray Tracking (CRT) detectors and the HEGRA air-shower array on La Palma, Canary Islands, have been analysed to investigate changes of the cosmic ay mass composition at the ‘knee’ of the cosmic-ray flux spectrum near 1015 eV energy. The analysis is based on the angular distributions of particles in air showers. HEGRA data provided the shower size, direction, and core position and CRT data the particle track information. It is shown that the angular distribution of muons in air showers is sensitive to the composition over a wide range of shower sizes and, thus, primary cosmic-ray energies with little systematic uncertainties. Results can be easily expressed in terms of ln A of primary cosmic rays. In the lower part of the energy range covered, we have considerable overlap with direct composition measurements by the JACEE collaboration and find compatible results in the observed rise of ln A. Above about 1015 eV energy we find no or at most a slow further rise of ln A. Simple cosmic-ray composition models are presented which are fully consistent with our results as well as the JACEE flux and composition measurements and the flux measurements of the Tibet ASγ collaboration. Minimal three-parameter composition models defined by the same power-law slope of all elements below the knee and a common change in slope at a fixed rigidity are inconsistent with these data.  相似文献   
197.
庞晓红  王贞松 《遥感学报》1998,2(4):259-263
在处理合成孔径雷达(SAR)图像中,精确地估计图像的局部统计特性和尽可能多地滤除相干斑都需要较大的窗口尺寸,而这与图像边缘和纹理结构的检测需要较小的窗口尺寸相矛盾。一般滤波器都是二者窗口尺寸的均衡,这必然导致二者都不能取得很好的效果。本文提出的新方法有效的解决了这一矛盾。此方法使处理后的SAR图像既保存了边缘和纹理结构,避免了以往滤波器中使边缘变模糊的问题,又有效地滤除了相干斑噪声。  相似文献   
198.
199.
We investigate the influence of magnetic mirroring and elastic and inelastic scattering on the angular redistribution in a proton/hydrogen beam by using a transport code in comparison with observations. H-emission Doppler profiles viewed in the magnetic zenith exhibit a red-shifted component which is indicative of upward fluxes. In order to determine the origin of this red shift, we evaluate the influence of two angular redistribution sources which are included in our proton/hydrogen transport model. Even though it generates an upward flux, the redistribution due to magnetic mirroring effect is not sufficient to explain the red shift. On the other hand, the collisional angular scattering induces a much more significant red shift in the lower atmosphere. The red shift due to collisions is produced by < 1 -keV protons and is so small as to require an instrumental bandwidth <0.2nm. This explains the absence of measured upward proton/hydrogen fluxes in the Proton I rocket data because no useable data concerning protons < 1 keV are available. At the same time, our model agrees with measured ground-based H-emission Doppler profiles and suggests that previously reported red shift observations were due mostly to instrumental bandwidth broadening of the profile. Our results suggest that Doppler profile measurements with higher spectral resolution may enable us to quantify better the angular scattering in proton aurora.  相似文献   
200.
 Ignimbrites of the 13-ka Upper Laacher See Tephra were deposited from small, highly concentrated, moderately fluidized pyroclastic flows. Their unconsolidated nature, and the prominence of accidental Devonian slate fragments, make these ignimbrites ideal for clast fabric studies. The upper flow unit of ignimbrite M14 has characteristics typical of a type-2 ignimbrite. Layer 2a and the lower part of layer 2b of the flow unit have strong, upstream-inclined a[p] fabrics (a[p] means long particle axes parallel to flow direction). Only clasts with a/b axial ratios of 2.5 or greater preserve good a[p] fabrics, whereas the a–b planes of flat fragments dip upstream irrespective of axial ratio. The a-axis fabric becomes weaker, flatter, and more girdle-like in the upper half of layer 2b. At one locality the a-axis fabric appears to rotate 40° up through the flow unit, suggesting either shear decoupling of different levels in the moving flow or unsteadiness effects in a flow depositing progressively at its base. The existence of similarly strong a[p] fabrics in layer 2a and the lower half of layer 2b appears inconsistent with the common interpretation that ignimbrite flow units are emplaced as a plug of essentially non-shearing material (layer 2b) on a thin shear layer (layer 2a), and that the entire flow freezes en masse to form the deposit. The data suggest that, if the flow froze en masse, it was shearing pervasively through at least half its thickness. Another possibility is that the flow unit aggraded progressively from the base up, and that the fabrics record the integrated history of shear directions and intensities immediately above the bed throughout the duration of deposition. Received: 13 February 1997 / Accepted: 4 April 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号