全文获取类型
收费全文 | 7575篇 |
免费 | 1839篇 |
国内免费 | 1784篇 |
专业分类
测绘学 | 138篇 |
大气科学 | 1038篇 |
地球物理 | 3640篇 |
地质学 | 2190篇 |
海洋学 | 3067篇 |
天文学 | 191篇 |
综合类 | 392篇 |
自然地理 | 542篇 |
出版年
2024年 | 54篇 |
2023年 | 148篇 |
2022年 | 212篇 |
2021年 | 277篇 |
2020年 | 308篇 |
2019年 | 409篇 |
2018年 | 308篇 |
2017年 | 292篇 |
2016年 | 296篇 |
2015年 | 364篇 |
2014年 | 400篇 |
2013年 | 404篇 |
2012年 | 454篇 |
2011年 | 458篇 |
2010年 | 368篇 |
2009年 | 454篇 |
2008年 | 450篇 |
2007年 | 591篇 |
2006年 | 481篇 |
2005年 | 448篇 |
2004年 | 448篇 |
2003年 | 398篇 |
2002年 | 374篇 |
2001年 | 311篇 |
2000年 | 313篇 |
1999年 | 290篇 |
1998年 | 290篇 |
1997年 | 242篇 |
1996年 | 238篇 |
1995年 | 226篇 |
1994年 | 205篇 |
1993年 | 182篇 |
1992年 | 128篇 |
1991年 | 112篇 |
1990年 | 64篇 |
1989年 | 55篇 |
1988年 | 50篇 |
1987年 | 32篇 |
1986年 | 13篇 |
1985年 | 12篇 |
1984年 | 7篇 |
1983年 | 5篇 |
1980年 | 5篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1954年 | 10篇 |
1905年 | 1篇 |
1900年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
61.
62.
The paper suggests modelling the long-term distribution of significant wave height with the Gamma, Beta of the first and second kind models. The three models are interrelated, flexible and cover the three different tail types of Extreme Value Theory. They can be used simultaneously as a means of assessing the uncertainty effects that result from choosing equally plausible models with different tail types. This procedure is intended for those applications that require the long-term distribution of significant wave height as input rather than the prediction of extreme values. The models are fitted to some significant wave data as an illustration. Details about maximum likelihood estimation are given in A. 相似文献
63.
Peitao Wang Zhiyuan Ren Lining Sun Jingming Hou Zongchen Wang Ye Yuan Fujiang Yu 《海洋学报(英文版)》2021,40(11):11-30
The systematic discrepancies in both tsunami arrival time and leading negative phase (LNP) were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel, Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami (DART) sites and 29 coastal tide gauge stations. The results revealed systematic travel time delay of as much as 22 min (approximately 1.7% of the total travel time) relative to the simulated long waves from the 2015 Chilean tsunami. The delay discrepancy was found to increase with travel time. It was difficult to identify the LNP from the near-shore observation system due to the strong background noise, but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean. We determined that the LNP for the Chilean tsunami had an average duration of 33 min, which was close to the dominant period of the tsunami source. Most of the amplitude ratios to the first elevation phase were approximately 40%, with the largest equivalent to the first positive phase amplitude. We performed numerical analyses by applying the corrected long wave model, which accounted for the effects of seawater density stratification due to compressibility, self-attraction and loading (SAL) of the earth, and wave dispersion compared with observed tsunami waveforms. We attempted to accurately calculate the arrival time and LNP, and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event. The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model. Taking all of these effects into consideration, our results demonstrated good agreement between the observed and simulated waveforms. We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP, which is observed for tsunamis that have propagated over long distances frequently. The travel time delay between the observed and corrected simulated waveforms is reduced to <8 min and the amplitude discrepancy between them was also markedly diminished. The incorporated effects amounted to approximately 78% of the travel time delay correction, with seawater density stratification, SAL, and Boussinesq dispersion contributing approximately 39%, 21%, and 18%, respectively. The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event. In contrast, the seawater stratification only reduced the tsunami speed, whereas the earth's elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations. This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival, and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami. These results also support previous theory and can help to explain the observed discrepancies. 相似文献
64.
绿色海堤是传统结构工程与海岸生态系统共同组合而成的新型海堤, 用以应对未来海面上升、风暴加剧给低地海岸防护带来的挑战。需解决的问题主要有海岸生态系统消浪过程及生态系统在海堤体系中的配置方式。理论分析、现场观测、物模数模所获结果表明, 海岸生态系统确有显著的消浪功能: 1) 陆架泥区消浪, 其机制以再悬浮和浮泥运动为主, 底部摩擦为次; 2) 潮滩下部的粉砂细砂滩底部摩擦和推移质运动共同造成波能耗散, 而上部的泥滩则以再悬浮和悬沙输运为主; 3) 在盐沼、红树林、海草床等由植被构成的生态系统, 植物通过形态阻力、茎秆运动来阻滞水流、耗散波能, 其效能高于沉积物床面对波能的耗散; 4) 生物礁主要有珊瑚礁和牡蛎礁, 其消能作用主要通过床面摩擦和波浪破碎, 效能较高, 尤其是在风暴期间。生态系统如何成为海堤的有机组成部分, 尤其是侵蚀型海岸的生态位修复和绿色海堤整体设计, 还需进一步研究相关的科学问题: 与硬质工程结合的盐沼-牡蛎礁的适应性生物学; 未来环境变化条件下生态系统的稳定性; 绿色海堤生态系统空间配置及其与风暴事件的时间尺度匹配; 基于均衡剖面理论的海堤形态优化。 相似文献
65.
本文基于OpenFOAM建立三维波浪数值水槽,模拟计算植被水域波浪作用下的床面切应力,分析了入射波高、植被密度、植被淹没高度、水流对植被水域波浪作用下床面切应力的影响。结果表明:纯波时,由于植被的阻水作用,植被水域床面切应力沿程衰减,其衰减程度与入射波高、植被密度及植被淹没高度呈现正相关;与纯波时相比,在波浪和同向流共同作用下正向床面切应力幅值增大,负向床面切应力幅值减小;弱水流对植被水域床面切应力的大小及分布无明显影响;强水流时,床面切应力在植被水域先增大后逐渐减小并在植被水域后显著降低。 相似文献
66.
扬子浅滩东南海域海底潮流沙脊、沙波特征 总被引:1,自引:0,他引:1
利用seabat8101多波束系统对扬子浅滩东南海底地形进行了高精度探测。发现海底呈明显近乎平行排列的条带状起伏,脊谷相间,沙脊大部分呈NW-SE向排列,发育在45~50 m水深范围之内,沙脊横剖面不对称,大部分沙脊西南侧坡度大、东北坡缓。沙脊规模略有差异,沙脊宽度约0.6~9.8 km,沙脊之间间距可达8.9~22.4 km,高度约1.8~13.3 m,研究区内最长可达53 km。部分脊槽过渡区域发育成片链状海底沙波,沙波大致呈NE-SW走向,波高约0.3~1 m,波长1 km左右。研究区中西部有海底礁石孤立地突兀于相对平坦的海底之上,暂定名为扬礁,最浅水深35.9 m,位于30°59'7.4'~31°N,124°36'48.7'~124°37'40'E。扬子浅滩东南海域沙脊是介于活动沙脊和衰亡沙脊之间的准活动沙脊。该研究将为我国海洋开发和海洋经济发展、海洋行政管理以及海洋安全保障提供服务。 相似文献
67.
The scattering of water waves by bottom-mounted vertical circular cylinders is solved by using the null-field integral equations in conjunction with degenerate kernels and Fourier series to avoid calculating the Cauchy and Hadamard principal values. In the implementation, the null-field point can be exactly located on the real boundary owing to the introduction of degenerate kernels for fundamental solutions. An adaptive observer system of polar coordinates is considered to fully employ the properties of degenerate kernels. For the hypersingular equation, vector decomposition for the radial and tangential gradients is carefully considered. This method can be seen as a semi-analytical approach since errors attribute from the truncation of Fourier series. Neither hypersingularity in the Burton and Miller approach nor the CHIEF concept was required to deal with the problem of irregular frequencies. Five advantages of free of calculating principal value, well-posed algebraic system, convergence rate of exponential order, meshfree and elimination of boundary-layer effect, are achieved by using the present approach. Numerical results are given for the forces and free-surface elevation around the circular boundaries. Also, the near-trapped behavior arisen from the physical resonance is detected. A general-purpose program for water wave impinging several circular cylinders with arbitrary number, radii, and positions was developed. Several examples of water wave structure interaction by vertical circular cylinders were demonstrated to see the validity of the present formulation. 相似文献
68.
J. Bhattacharjee 《Ocean Engineering》2009,36(11):831-841
In the present study, the effect of shear current on the propagation of flexural gravity waves is analyzed under the assumptions of linearized shallow-water theory. Explicit expressions for the reflection and transmission coefficients associated with flexural gravity wave scattering by a step discontinuity in both water depth and current speed are derived. Further, trapping and scattering of flexural gravity waves by a jet-like shear current with a top-hat profile are examined and certain limiting conditions for the waves to exist are derived. The effects of change in water depth, current speed, incident wavelength and the angle of incidence on the group and phase velocities as well as on the reflection and transmission characteristics are analyzed through different numerical results. 相似文献
69.
The statistical distribution of wave orbital velocity in intermediate coastal water depth has been quantitatively determined from the comprehensive field velocity data collected near the seabed in this study. Two ocean ADV current meters, which were mounted at 0.5 m above the seabed on two separate stainless steel tripods sitting on the seabed, were used to measure instantaneous water particle velocities at a 2 Hz sampling rate for 17.07 min every hour in two coastal water depths of 11 m and 23 m in nine field deployments over a period of 2 years. The zero-crossing method is applied to analyse the field velocity data collected in each field deployment to obtain a large sample of wave orbital velocity amplitudes of individual waves. Based on the collected field velocity data, it is found that the histogram of instantaneous wave orbital velocities perfectly follows the Gaussian distribution as commonly assumed, while the histogram of wave orbital velocity amplitudes is less accurately described by the Rayleigh distribution than the modified Rayleigh and the Weibull distribution. It is also found that large orbital velocity amplitudes are generally overestimated by the Rayleigh distribution, but well predicted by the modified Rayleigh and the Weibull distribution. The expected value of maximum orbital velocity in a velocity record of finite size is also derived from the three distributions and found to agree well with the present field data. 相似文献
70.
Fernando J. Mndez Melisa Menndez Alberto Luceo Raúl Medina Nicholas E. Graham 《Ocean Engineering》2008,35(1):131-138
This paper presents a statistical model to characterize the long-term extreme value distribution of significant wave height, conditioning to the duration of the storm and accounting for seasonality. A time-dependent version of the peak over threshold (POT) approach is used to build the model, which is then applied to specific reanalysis time series and NOAA buoy records. The model considers the annual and semiannual cycles which are parameterized in terms of harmonic functions. The inclusion of seasonal variabilities substantially reduces the residuals of the fitted model. The information obtained in this study can be useful to design maritime works, because (a) the model improves the understanding of the variability of extreme wave climate along a year and (b) the model accounts for the duration of the storm, which is a key parameter in several formulations for rubble mound breakwater design. 相似文献