首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1712篇
  免费   9篇
  国内免费   128篇
测绘学   62篇
大气科学   95篇
地球物理   419篇
地质学   989篇
海洋学   126篇
天文学   38篇
自然地理   120篇
  2024年   20篇
  2023年   67篇
  2022年   47篇
  2021年   68篇
  2020年   161篇
  2019年   89篇
  2018年   119篇
  2017年   178篇
  2016年   111篇
  2015年   132篇
  2014年   229篇
  2013年   354篇
  2012年   214篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   16篇
  2000年   3篇
  1993年   1篇
排序方式: 共有1849条查询结果,搜索用时 15 毫秒
231.
ABSTRACT

The Pelona–Orocopia–Rand and related schists of southern California are an archetypal example of an exhumed shallow subduction complex. ‘The schist’ comprises mainly trench materials underthust beneath continental arc rocks during Late Cretaceous–early Cenozoic collision of one or more oceanic plateaux with southern California. The arc-on-trench relationship, without intervening mantle or lowermost crust, implies that significant subduction erosion accompanied shallow subduction. Upsection increases in metamorphic grade (~150 ± 100°C/km) and spatial variations in age and peak temperature provide an ~50 million year long record of tectonic underplating within a cooling system. Evidence for palaeoseismic events in earliest formed and hottest (locally transitional granulite grade) schists provides a possible field-based record of episodic tremor and slow slip events such as detected in several modern shallow subduction zones. Structural ascent of the schist was achieved in distinct Late Cretaceous–early Eocene and late Oligocene–early Miocene extensional pulses, the first during collapse of gravitationally unstable upper plate assemblages and accompanied by trench-directed (top-NE) lower plate extrusion and the second corresponding temporally, spatially, and in character with core complex formation in the SW United States. The line between schist and core complex belts is blurred by the recent discovery of schist within 40 km of the nearest core complex and containing synkinematic Miocene intrusions, a hallmark of SW U.S. core complexes. The history of schist assembly, metamorphism, and exhumation provides the most complete field-based record of thermo-mechanical processes, subduction erosion and tectonic underplating in particular, that operated during a shallow subduction event. Future cross-disciplinary investigations of, and comparisons between, the schist and other possible ancient (e.g. Swakane gneiss, Sanbagawa belt, Qiangtang terrane) and modern (e.g. Cascadia, SW Japan, central Mexico, Chile) shallow subduction zones will yield new insights into the tectonic and petrologic processes that operate within such systems.  相似文献   
232.
The Cenomanian–Turonian Boundary Event (CTBE) event is not associated with a transgression on the southern margin of the Subalpine Basin, but with a steady shallowing-up trend beginning in the lower half of the δ13C positive shift. The SW–NE Rouaine Fault had a complex role, first in isolating a black shale basin to the west and a large, deep submarine plateau devoid of black shale to the east, then by a strike-slip movement that induced a forced progradation to the north of the southern platform in the eastern compartment. This compressive tectonic reactivation of the southern margin began around the deposition of the local equivalent of the Plenus bed of boreal basins, as shown by correlation supported by both isotope and palaeontological data. Other local data are pieced together to suggest that the whole of SE France underwent a short-lived transpressive tectonic pulse around the Cenomanian–Turonian boundary, probably connected with the early compressive movement of Africa vs. Europe. On a larger scale, other published data suggest that this pulse could be a global one. It is coeval with renewed thrust loading, volcanism and transgression in the North-American Western Interior, local emergences during the event along the eastern Atlantic margin, suggesting a slight tendency to inversion of the margin, and a tilting to the east of the North-Africa plate that could explain the large transgression recorded from Morocco to Tunisia on the Saharan Craton.New isotope and palaeontological (coiling ratio of Muricohedbergella delrioensis) data from SE France suggest that two coolings of suprabasinal importance occurred just before and during the build-up of the d13C shift, including the boreal “Plenus Marls“, especially its middle limestone bed and its SE France equivalent.Regarding the extinction of the genus Thalmaninella and Rotalipora and during the event, neither anoxia nor climate changes can fully explain the palaeontological crisis, given that Rotalipora cushmani crosses the first phase of anoxia without harm, as well as the two coolings, not only in SE France but on a large scale, as shown by the correlation of the published data. This extinction needs alternative explanations as we challenge both anoxia and climate as major causes.  相似文献   
233.
The Upper Cretaceous succession outcropping in the Anamas–Akseki Autochton, consists of approximately 500 m thick purely platform carbonate sediments. It begins with Cenomanian limestones intercalated with limestone breccias (Unit-1) containing mainly Pseudorhapydionina dubia, Pseudonummoloculina heimi, Spiroloculina cretacea (Assemblage I) and unconformably overlies the Lower Cretaceous (Barremian–Aptian) limestones with Vercorsella laurentii, Praechrysalidina infracretacea and Salpingoporella hasi. The Cenomanian limestones include foraminiferal packstone–wackestone, peloidal packstone–wackestone and mudstone microfacies deposited in restricted platform conditions. The Cenomanian succession is truncated by an unconformity characterised by locale bauxite deposits. Immediately above the unconformable surface, dolomitic limestones and rudistid limestones (Unit-2) are assigned to the upper Campanian based on the benthic foraminiferal assemblage (Assemblage II) comprising mainly Murciella gr. cuvillieri, Pseudocyclammina sphaeroidea, Accordiella conica, Scandonea samnitica and Fleuryana adriatica (smaller-sized populations). The upper Campanian limestones composed of dominantly foraminiferal-microbial packstone–wackestone microfacies deposited in shallow water environment with low energy, restricted circulation. The following limestones of the Unit-2 is characterised by sporadic intercalation of “open shelf” Orbitoides, Omphalocyclus, Siderolites assemblage (Assemblage III), assigned to the Maastrichtian, in addition to pre-existing “restricted platform” species. In the upper part of this biozone, the Rhapydionina liburnica/Fleuryana adriatica concurrent range subzone (Assemblage IIIb) is distinguished by the presence of Valvulina aff. triangularis, Loftusia minor as well as the nominal species. The Maastrichtian limestones with sporadically open marine influence consist of bioclastic (rudist-bearing) packstone–floatstone, foraminiferal packstone–wackestone with rudist fragments and peloidal/intraclastic packstone–wackestone microfacies deposited in shallow subtidal–subtidal (lagoonal) environments. The Upper Cretaceous succession passes upwardly into 70 m thick limestones and clayey limestones (Unit-3) which do not contain rudists and pre-existing foraminiferal assemblage with one exception Valvulina aff. triangularis. Variable amounts of ostracoda, discorbids, miliolids, dasycladacean algae and Stomatorbina sp. (Assemblage IV) occur into mud-rich microfacies suggesting restricted conditions with low water energy. A probable Danian age is proposed for the Unit-3 based on the occurrence of Valvulina aff. triangularis and Stomatorbina sp. which were previously recorded from Danian of peri-Tethyan platforms.  相似文献   
234.
A two-and-a-half-dimensional (2.5-D) coupled finite element–boundary element (FE–BE) model is presented to simulate the three-dimensional dynamic interaction between saturated soils and structures with longitudinally invariant geometries. A regularized 2.5-D boundary integral equation for saturated porous media is derived that avoids the evaluation of singular traction integrals. The 2.5-D coupled FE–BE model is established by using the continuity conditions on the soil–structure interface. The developed model is verified through comparison with an existing semi-analytical method. Two case studies of a tunnel embedded in a poroelastic half-space and the efficiency of a vibration isolating screen are presented.  相似文献   
235.
Conodont species Iapetognathus fluctivagus and Iapetonudus ibexensis are documented for the first time from Australia. The former is the primary marker internationally defining the base of the Ordovician, and the latter is also a distinctive species previously recorded only from the base of the Ordovician in North America. Both species were recovered from a single sample in the Kandie Tank Limestone of the Kayrunnera Group, located about 50 km west of White Cliffs in far western New South Wales. Other species recovered from this sample include Prooneotodus spp., Cordylodus lindstromi, Cordylodus proavus, Hirsutodontus simplex, Teridontus nakamurai and Variabiloconus sp. Recognition of the Iapetognathus fluctivagus Biozone in the Kandie Tank Limestone supports its correlation with the Green Point section (Global Stratigraphic Section and Point for the base of the Ordovician) in western Newfoundland and the Lawson Cove section of Utah (Auxiliary Stratigraphic Section and Point), as well as sections in Asia and South America. Review of other sections in Australia and elsewhere spanning the Cambrian–Ordovician boundary confirms that, in the absence of I. fluctivagus, the presence of C. lindstromi is a good proxy for this level.  相似文献   
236.
237.
The single tie (sleeper) push test (STPT) is a common method to evaluate the lateral resistance of a railway track sleeper. This methodology evaluates the lateral resistance phenomenon in a static manner despite the fact that the majority of the exerted loads on a railway track have a dynamic nature. For this reason, a mass–spring–damper numerical model was created to investigate the dynamic lateral interaction between an isolated sleeper and ballast layer in the presence of various lateral impact loads. On the basis of the model outputs, a pendulum loading test device (PLTD) was designed and developed in the laboratory. In this regard, a cylindrical hammer with modifiable mass and triggering angle was installed on a steel frame for imposing lateral impact load on an instrumented concrete sleeper. The graphs of the sleeper–ballast interaction force versus the sleeper lateral displacement were extracted for different masses and triggering angles of the hammer. Considering a same condition for sleeper, the maximum value of this interaction force was called the dynamic lateral resistance (DLR) and static lateral resistance (SLR) respect to the dynamic and static states of lateral loading. Comparing the values of the sleeper DLRs and SLR indicated that unlike the constant SLR of 6.5 kN, the DLR was in the range 2–10.2 kN in the impact load domain of 3–40 kN. However, as a key finding, the average slopes of the DLR and SLR graphs were equivalent in the dynamic and static tests.  相似文献   
238.
The dynamic response of a seismic soil–pile–structure interaction (SSPSI) system is investigated in this paper by conducting nonlinear 3D finite element numerical simulations. Nonlinear behaviors such as non-reflecting boundary condition and soil–pile–structure interaction modeled by the penalty method have been taken into account. An equivalent linear model developed from the ground response analysis and the modified Drucker–Prager model are separately used for soil ground. A comparison of the two models shows that the equivalent linear soil model results in an underestimated acceleration response of the structure under this ground shaking and the soil behavior should be considered as a fully-nonlinear constitutive model in the design process of the SSPSI system. It was also observed that the dynamic response of the system is greatly affected by the nonlinearity of soil–pile interface and is not sensitive to the dilation angle of the soil. Furthermore, the effect of the presence of pile foundations on SSPSI response is also analyzed and discussed.  相似文献   
239.
This study analyses the temporal clustering, spatial clustering, and statistics of the 2012–2013 Torreperogil-Sabiote (southern Spain) seismic swarm. During the swarm, more than 2200 events were located, mostly at depths of 2–5 km, with magnitude event up to mbLg 3.9 (Mw 3.7). On the basis of daily activity rate, three main temporal phases are identified and analysed. The analysis combines different seismological relationships to improve our understanding of the physical processes related to the swarm's occurrence. Each temporal phase is characterized by its cumulative seismic moment. Using several different approaches, we estimate a catalog completeness magnitude of mc≅ 1.5. The maximum likelihood b-value estimates for each swarm phase are 1.11 ± 0.09, 1.04 ± 0.04, and 0.90 ± 0.04, respectively. To test the hypothesis that a b-value decrease is a precursor to a large event, we study temporal variations in b-value using overlapping moving windows. A relationship can be inferred between change in b-value and the regime style of the rupture. b-values are indicators of the stress regime, and influence the size of ruptures. The fractal dimension D2 is used to perform spatial analysis. Cumulative gamma and beta functions are used to analyse the behaviour of inter-event distances during the earthquake sequence.  相似文献   
240.
Tephra dispersed during the Millennium eruption (ME), Changbaishan Volcano, NE China provides one of the key stratigraphic links between Asia and Greenland for the synchronization of palaeoenvironmental records. However, controversy surrounds proximal-distal tephra correlations because (a) the proposed proximal correlatives of the distal ME tephra (i.e. B–Tm) lack an unequivocal chronostratigraphic context, and (b) the ME tephra deposits have not been chemically characterized for a full spectrum of element using grain-specific techniques. Here we present grain-specific glass chemistry, including for the first time, single grain trace element data, for a composite proximal sequence and a distal tephra from Lake Kushu, northern Japan (ca. 1100 km away from Changbaishan). We demonstrate a robust proximal-distal correlation and that the Kushu tephra is chemically associated with the ME/B–Tm. We propose that three of the proximal pyroclastic fall units were erupted as part of the ME. The radiocarbon chronology of the Kushu sedimentary record has been utilised to generate a Bayesian age-depth model, providing an age for the Kushu tephra which is consistent with high resolution ages determined for the eruption and therefore supports our geochemical correlation. Two further Bayesian age-depth models were independently constructed each incorporating one of two ice-core derived ages for the B–Tm tephra, providing Bayesian modelled ages of 933–949 and 944–947 cal AD (95.4%) for the Kushu tephra. The high resolution ice-core tephra ages imported into the deposition models help test and ultimately constrain the radiocarbon chronology in this interval of the Lake Kushu sedimentary record. The observed geochemical diversity between proximal and distal ME tephra deposits clearly evidences the interaction of two compositionally distinct magma batches during this caldera forming eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号