首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   27篇
  国内免费   13篇
大气科学   10篇
地球物理   116篇
地质学   35篇
海洋学   59篇
天文学   1篇
综合类   2篇
自然地理   5篇
  2024年   1篇
  2022年   1篇
  2021年   8篇
  2020年   14篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   18篇
  2007年   13篇
  2006年   14篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   10篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
61.
A geomorphological instantaneous unit hydrograph (GIUH) rainfall‐runoff model was applied in a 31 km2 montane catchment in Scotland. Modelling was based on flow path length distributions derived from a digital terrain model (DTM). The model was applied in two ways; a single landscape unit response based on the DTM alone, and a two‐landscape unit response, which incorporated the distribution of saturated areas derived from field‐validated geographic information system (GIS) analysis based on a DTM and soil maps. This was to test the hypothesis that incorporation of process‐information would enhance the model performance. The model was applied with limited multiple event calibration to produce parameter sets which could be applied to a spectrum of events with contrasting characteristics and antecedent conditions. Gran alkalinity was used as a tracer to provide an additional objective measure for assessing model performance. The models captured the hydrological response dynamics of the catchment reasonably well. In general, the single landscape unit approach produced the best individual model performance statistics, though the two‐landscape unit approach provided a range of models, which bracketed the storm hydrograph response more realistically. There was a tendency to over‐predict the rising limb of the hydrograph, underestimate large storm event peaks and anticipate the hydrograph recession too rapidly. Most of these limitations could be explained by the simplistic assumptions embedded within the GIUH approach. The modelling also gave feasible predictions of stream water chemistry, though these could not be used as a basis for model rejection. Nevertheless, the study suggested that the approach has potential for prediction of hydrological response in ungauged montane headwater basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
With the increasing demand for water resources, the utilization of marginal water resources of poor-quality has become a focus of attention. The brackish water developed in the Loess Plateau is not only salty but also famous for its ‘bitterness’. In the present work, multi-isotope analysis (Sr, B) was combined with geochemical analysis to gain insight into the hydrogeochemical evolution and formation mechanisms of brackish water. These results demonstrate that groundwater in the headwater is influenced by carbonate weathering. After the confluence of several tributaries in the headwater, the total dissolved solids (TDS) of water is significantly increased. The dissolution of evaporates is shown to be the main source of salinity in brackish water, which also greatly affects the strontium isotopic composition of water. This includes the dissolution of Mg-rich minerals, which is the main cause of the bitterness. Furthermore, the release of calcium from the dissolution of gypsum may induce calcite precipitation and incongruent dissolution of dolomite, which also contributes to the enrichment of magnesium. The highly fractionated boron isotopic values observed in the upstream groundwater were explained by the absorption with clay minerals. The inflow of brackish groundwater is the source of river water. Then evaporation further aggravates the salinization of river water, with water quality evolving to saline conditions in the lower reach. When the river reaches the valley plain, the 87Sr/86Sr ratios decreases significantly, which is primarily related to erosion of the riverbanks during runoff. These results indicate that water resource sustainability could be enhanced by directing focus to mitigating salinization in the source area of the catchment.  相似文献   
63.
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub‐páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007–November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C‐horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
64.
Understanding runoff generation processes is important for flood prediction, water management, erosion control, water quality, contaminant transport and the evaluation of impacts of land use change. However, little process research has been carried out in southern Chile. In particular the young volcanic ash soils, which are typical for this area, are not well understood in their hydrologic behaviour. To establish a ‘reference study’ which can then be used for comparison with other (disturbed) sites, this study focuses on the investigation of runoff generation processes in an undisturbed, forested catchment in the Chilean Andes. The paper reports on an investigation of these processes with different tracer methods at different spatial scales. Hydrograph separation with environmental isotopes and geochemical constituents was used on the catchment scale. Thermal energy was used as a tracer to investigate groundwater–surface water interactions at the local stream reach scale and dye tracers were used to study infiltration and percolation characteristics at the plot scale. It was found that pre‐event water dominates the storm hydrograph. In the lower reaches, however, water usually exfiltrates from the stream into the adjacent aquifer. The dye tracer experiments showed that while preferential vertical flow dominates under forest, water infiltrates as a straight horizontal front in the bare volcanic ashes (no vegetation) on the catchment rim. Subsurface flow patterns in the forest differ significantly from summer to winter. All three approaches used in this study suggest an important shift in dominant processes from dry to wet season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
65.
Surface samples from the eastern Barents and south-western Kara seas have been analysed for clay mineralogy. Transport paths, the role of regional sources and local bedrock outcrops and the influence of hydrodynamic and glacigenous processes for clay distribution on the shelves are discussed in relation to central Arctic Ocean deep sea and sea ice sediments. Franz Josef Land and Novaya Zemlya show significantly different clay mineral associations. Although smectite concentrations are fairly high, Franz Josef Land can be excluded as a source for central Arctic sea ice sediments, which are relatively rich in smectite. In the Kara Sea, smectite concentrations in coastal sediments surpass even the Franz Josef Land concentrations. The large cyclonic gyre in the eastern Barents Sea between Novaya Zemlya and Franz Josef Land, which serves as a mixing zone between Arctic and North Atlantic water, is apparently reflected within the smectite distribution pattern. With the exception of Franz Josef Land, the area of investigation is typically low in kaolinite. In particular, coastal areas and areas north of Novaya Zemlya, influenced by the inflow of Arctic waters, show the lowest kaolinite concentrations. A high kaolinite occurrence within the Nansen Basin is most probably related to Franz Josef Land and emphasizes the importance of long-range downslope transport of sediments across the continental slope. The surface water circulation pattern in close interaction with local outcrops onshore Novaya Zemlya and locally restricted occurrences within the eastern Barents Sea significantly alter the illite dispersal pattern. Illite concentrations are lowest around Franz Josef Land. Chlorite is generally low in the area of investigation. Submarine outcrops and important chlorite occurrences onshore Novaya Zemlya bias its distribution pattern.  相似文献   
66.
Depth profiles of the chlorofluoromethanes (CFM), CFCl3 and CF2Cl2, have been obtained together with tritium profiles from water samples collected in the Norwegian Sea between surface and 2800 m depth. CFM analysis was performed by vacuum extraction of the dissolved gases from 500 ml samples of seawater and subsequent gaschromatographic measurement. The CFM concentration decreases with depth to about 10 percent of surface concentration at depths below 2000 m. The same behaviour is found for the tritium content. From a correlation of the CFM and tritium concentration the upper limit of the preindustrial atmospheric CFM levels can be estimated to 5 percent of the present day concentrations.  相似文献   
67.
There are very few experimental studies identifying hydrological pathways within rain forest slopes. Such knowledge is, however, necessary to understand why forest disturbance affects rainfall–riverflow response and nutrient migration. This study examines flow pathways within lowland rain forest slopes comprising Udults of the Ultisol soil order. Experimentation was conducted on four SE Asian hillslope units (each 5 × 5 m in plan) in the Bukit Timah catchment (Singapore Island), and in the W8S5 catchment (Sabah, Borneo Island). The flow pathways were identified by artificial tracer experiments. We evaluated how well hydrometric calculations based on tensiometry and permeametry measurements predicted the tracer patterns. The tracer work indicated much faster subsurface flows at Bukit Timah than W8S5 for the storms studied. Some explanation of the greater subsurface waterflows at Bukit Timah in comparison to W8S5 is afforded by the less steep moisture release curves which maintain hydraulic conductivity as the soil dries. Vertical flow of the tracer through the upper 1 m of soil predominated (>90 per cent of percolation) in the Bukit Timah slopes. In some contrast, a major component (approximately 60 per cent) of the tracer percolation was directed laterally within the W8S5 slopes. The flow vectors calculated using the hydrometric methods did, however, grossly under‐estimate the degree of lateral deflection of waterflow generated at W8S5 and to a lesser extent over‐estimated it at Bukit Timah. In part, these errors may relate to the inability of traditional hydrometric techniques to fully characterize the effect of the large and small ‘natural soil pipes’ present within both catchments. In conclusion, the study indicates that marked variations in flow vectors exist within the Udult great group of SE Asian soils and hydrometric calculations may be poor predictors of these dominant pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
68.
69.
A note on the general concept of wave breaking for Rossby and gravity waves   总被引:3,自引:0,他引:3  
A recently proposed general definition of wave breaking is further discussed, in order to deal with some points on which misunderstanding appears to have arisen. As with surface and internal gravity waves, the classification of Rossby waves into breaking and not breaking is a generic classification based on dynamical considerations, and not a statement about any unique signature or automatically recognizable shape. Nor is it a statement about passive tracers uncorrelated with potential vorticity on isentropic surfaces. A strong motivation for the definition is that proofs of the nonacceleration theorem of wave, mean-flow interaction theory rely, explicitly or implicitly, on a hypothesis that the waves do not break in the sense envisaged.The general definition refers to the qualitative behaviour of a certain set of material contours, namely those, and only those, which would undulate reversibly, with small slopes, under the influence of the waves' restoring mechanism, in those circumstances for which linearized, nondissipative wave theory is a self-consistent approximation to nonlinear reality. The waves' restoring mechanism depends upon the basic-state vertical potential density gradient in the case of gravity waves, and upon the basic-state isentropic gradient of potential vorticity in the case of Rossby waves. In the usual linearized theory of planetary scale Rossby waves on a zonal shear flow, the relevant material contours lie along latitude circles when undisturbed.  相似文献   
70.
The strontium content and the SO42?/Cl? and Mg2+/Ca2+ ratios were used as natural tracers of the residence time of seawater intrusion into the Castell de Ferro aquifer. Analysis of these parameters indicated the existence of two principal flowpaths in the aquifer. The first flows through the eastern part of the aquifer, through the karstified Castell de Ferro massif; it accommodates a larger and more rapid flow, so that the residence time is shorter, leading to lower SO42+/Cl? ratios, lower Sr2+ content and higher Mg2+/Ca2+ ratios. The second flowpath is in the western sector, and flows exclusively through alluvial deposits; the flow here is slower, particularly that flowing towards the sea. Thus the residence time of the water here will be longer and there is scant flushing of the intruded seawater; this is manifested in the high Sr2+ content, high SO42+/Cl? and low Mg2+/Ca2+ ratios. To cite this article: P. Pulido-Leboeuf et al., C. R. Geoscience 335 (2003).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号