首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   231篇
  国内免费   45篇
测绘学   49篇
大气科学   73篇
地球物理   403篇
地质学   115篇
海洋学   33篇
天文学   9篇
综合类   5篇
自然地理   5篇
  2023年   1篇
  2022年   13篇
  2021年   6篇
  2020年   33篇
  2019年   32篇
  2018年   32篇
  2017年   22篇
  2016年   29篇
  2015年   26篇
  2014年   26篇
  2013年   29篇
  2012年   34篇
  2011年   43篇
  2010年   16篇
  2009年   33篇
  2008年   21篇
  2007年   33篇
  2006年   18篇
  2005年   30篇
  2004年   19篇
  2003年   15篇
  2002年   20篇
  2001年   18篇
  2000年   16篇
  1999年   14篇
  1998年   12篇
  1997年   15篇
  1996年   19篇
  1995年   11篇
  1994年   8篇
  1993年   10篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有692条查询结果,搜索用时 15 毫秒
81.
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition.  相似文献   
82.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir.  相似文献   
83.
试从现有的大量遥感影像中提取不同环境下地物的反射率,以目前常用的ETM+影像数据和荔枝波谱数据提取为例,先对影像进行系统校正得到星上反射率,然后采用6S大气校正模型对图像进行订正,反演地物的真实反射率,并采用与野外实测相结合的方法,分析了星上反射率、6S反演的反射率与实测值之间的误差,结果证明6S校正法是一种较高精度的地物波谱反演方法,可以方便、快捷、准确地从现有的大量遥感影像上直接获取荔枝的反射率.为下一步的自动高效从影像反演地物反射率的研究奠定了基础.  相似文献   
84.
The Mesozoic-Cenozoic tectonic history of the Muglad Basin, is dominated by extension and inversion tectonics, but evidence of the inversion tectonics has not been well documented yet. In some other rift basins of CARS and WARS the phase of the inversion tectonics is well documented by several authors.This paper presents a structural study of the Heglig field area located on the eastern flank of the Muglad Basin. Detailed 3D seismic interpretation allows a better understanding of the structural style of the Heglig field. The new structural analysis has shown that the Heglig field has a complex structural framework reflected in the presence of a combination of two structural styles. The extensional structure is influenced by inversion tectonics during the Santonian time that creates four-way dip anticline structure, overprinted by the subsequent extensional movement that creates tilted fault block. The presence of inversion tectonics has supported by different means including seismic reflection, velocity, and source rock maturity data. The authors attributed the trapping of oil in the Lower Bentiu reservoir, that requires a horizontal seal, to the presence of the four-way dip anticline structure created by the inversion tectonics.The current interpretation of the Heglig field 3D seismic data sheds new light on the development and evolution of a key structure in the Muglad Basin. The results help to resolve long-standing discussion concerning hydrocarbon accumulation of the lower part of Bentiu Formation that lacks horizontal sealing.  相似文献   
85.
The Goliat field consists of Middle to Late Triassic reservoirs which exploit an elongate anticline (the Goliat anticline) in the hanging wall of the Troms-Finnmark Fault Complex (TFFC), offshore Norway. The area is affected by a dense network of multiple trending fault populations which historically have inhibited seismic resolution owing to persistent fault shadow. Seismic investigations utilising a multi-azimuth three-dimensional survey (EN0901) allow much crisper delineation of seismic features previously unattainable by vintage single-azimuth surveys. Three dominant fault populations are identified in the area, two of which parallel TFFC segments, the Alke–Goliat (WSW–ENE) and the Goliat–Tornerose (NNE–SSW) segments. The Goliat field is located within a zone of intersection between both segments. A third E–W trending fault population, the Hammerfest Regional population, is likely influenced by the offshore extension of the Trollfjord-Komagelv Fault Complex (TKFZ). A local NW–SE trending fault population, the Goliat Central, affects the Goliat anticline and partitions Alke–Goliat and Goliat–Tornerose subsidiary faults resulting in curvilinear traces. Several cross-cutting relationships between fault populations are observed and may provide fluid compartmentalisation in the reservoirs. Compilation of regional transects and the EN0901 survey provides new insight into the evolution of the Goliat anticline which is underlain by a fault-bound basement terrace that became established in the Late Palaeozoic. The structure is interpreted to have formed due to vertical segmentation of the TFFC and cores the overlying broad anticline. The western limb of the Goliat anticline likely formed by differential compaction, whereas the eastern limb is primarily a result of hanging wall roll-over linked to variable listric to ramp-flat-ramp fault geometry. Rifting took place in the Palaeozoic (Carboniferous to Permian?), and in the Mesozoic, possibly as early as the Late Triassic, with a major event in the Late Jurassic to Early Cretaceous. Minor reactivations continued into the Late Cretaceous, and possibly the Early Cenozoic. Mesozoic syn-kinematic geometries in the hanging wall of the Goliat–Tornerose TFFC segment are consistent with deposition during up section propagation of a blind fault, over which, a monocline was established and later breached. Jogs (abrupt orientation changes) in fault traces, transverse folds (associated with displacement maxima/minima) and vertical fault jogs suggest the TFFC existed as a greater number of segments prior to amalgamation during the Late Triassic to Jurassic. A phase of Barremian inversion created local compression structures above blind extensional faults, and deeper seated buttressing against large faults. Polygonal faults affect the Late Cretaceous to Early Cenozoic successions.  相似文献   
86.
南极洲纳尔逊冰帽的某些动力学特征*   总被引:2,自引:0,他引:2  
纳尔逊冰帽是南设得兰群岛的一个小冰帽,受海洋性气候影响冰帽上降水丰富,冰温较高。冰帽表面运动速度完全由冰帽表面形态和冰帽底床形态所控制,其中E剖面更为复杂。冰帽驱动应力基本小于100kPa.由V/Z~Za曲线得到在V/7为0.6~3×10-9范围内的流动参数:n约为1;B≈4.3×1010dynescm-2sec.这表明在低应力区,冰体流动更接近牛顿流体。  相似文献   
87.
Pressure drops associated with reservoir production generate excess stress and strain that cause travel‐time shifts of reflected waves. Here, we invert time shifts of P‐, S‐, and PS‐waves measured between baseline and monitor surveys for pressure reduction and reservoir length. The inversion results can be used to estimate compaction‐induced stress and strain changes around the reservoir. We implement a hybrid inversion algorithm that incorporates elements of gradient, global/genetic, and nearest neighbour methods and permits exploration of the parameter space while simultaneously following local misfit gradients. Our synthetic examples indicate that optimal estimates of reservoir pressure from P‐wave data can be obtained using the reflections from the reservoir top. For S‐waves, time shifts from the top of the reservoir can be accurately inverted for pressure if the noise level is low. However, if noise contamination is significant, it is preferable to use S‐wave data (or combined shifts of all three modes) from reflectors beneath the reservoir. Joint wave type inversions demonstrate improvements over any single pure mode. Reservoir length can be estimated using the time shifts of any mode from the reservoir top or deeper reflectors. We also evaluate the differences between the actual strain field and those corresponding to the best‐case inversion results obtained using P‐ and S‐wave data. Another series of tests addresses the inversion of the time shifts for the pressure drops in two‐compartment reservoirs, as well as for the associated strain field. Numerical testing shows that a potentially serious source of error in the inversion is a distortion in the strain‐sensitivity coefficients, which govern the magnitude of stiffness changes. This feasibility study suggests which wave types and reflector locations may provide the most accurate estimates of reservoir parameters from compaction‐induced time shifts.  相似文献   
88.
The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near‐surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.  相似文献   
89.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   
90.
2011年3月11日日本发生9.0级地震,本文以此次地震的震间、同震和震后形变观测为约束,依据不同时段断层运动空间分布特征分析日本海沟地区强震与断层运动间关系.震间日本海沟地区,断层运动闭锁线深度约为60km,闭锁线以上从深到浅依次为断层运动强闭锁段、无震滑移段和弱闭锁段.由同震位错反演结果,2011年日本9.0级地震同震存在深浅两个滑移极值区,同震较浅的滑移极值区(同震位错量10~50m,深度小于30km)震间为断层弱闭锁段;同震较深的滑移极值区(同震位错量10~20m,深度在40km左右)震间为断层强闭锁段;而在两者之间的过渡带同震位错相对较小,震间断层运动表现为无震滑移.震后初期断层运动主要分布在在闭锁线以上的同震较深滑移极值区,而同震较浅的滑移极值区能量释放比较彻底,断层震后余滑量相对较小.依据本文同震和震间断层运动反演结果,震间强闭锁段积累10m同震位错需要100多年时间,与该区域历史上7级地震活动复发周期相当;震间弱闭锁段积累30~50m同震位错约需要300~600年时间,与相关研究给出的日本海沟9级左右地震复发周期比较一致.在实际孕震能力判定的工作中,由于不同性质的断层段在同震过程中会表现更多的组合形式,断层发震能力判定结果存在更多的不确定性,但利用区域形变观测等资料给出震间断层运动特征的研究工作对于断层强震发震能力的判定具有非常重要的实际意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号