首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2879篇
  免费   312篇
  国内免费   125篇
测绘学   35篇
大气科学   64篇
地球物理   1248篇
地质学   859篇
海洋学   393篇
天文学   18篇
综合类   74篇
自然地理   625篇
  2024年   6篇
  2023年   18篇
  2022年   41篇
  2021年   64篇
  2020年   54篇
  2019年   89篇
  2018年   78篇
  2017年   96篇
  2016年   102篇
  2015年   61篇
  2014年   104篇
  2013年   366篇
  2012年   83篇
  2011年   106篇
  2010年   114篇
  2009年   121篇
  2008年   142篇
  2007年   167篇
  2006年   161篇
  2005年   129篇
  2004年   127篇
  2003年   104篇
  2002年   110篇
  2001年   87篇
  2000年   99篇
  1999年   80篇
  1998年   64篇
  1997年   56篇
  1996年   76篇
  1995年   57篇
  1994年   72篇
  1993年   51篇
  1992年   52篇
  1991年   37篇
  1990年   30篇
  1989年   15篇
  1988年   14篇
  1987年   11篇
  1986年   15篇
  1985年   19篇
  1984年   10篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1954年   1篇
排序方式: 共有3316条查询结果,搜索用时 62 毫秒
101.
Magnitude calibration of north Indian earthquakes   总被引:13,自引:0,他引:13  
  相似文献   
102.
通过对沐川沙湾间地质、地貌、水文地质和地震活动特征分析,认为该区3级以上地震活动与铜街子电站水库畜水有关。1993~1995年沐川西部连续发生的3次5.0级以上地震属水库诱发的构造性地震。  相似文献   
103.
加卸载响应比理论是近年来提出的地震预测方法。本文进行了加卸载响应比异常时间尺度的统计研究,其中包括中国大陆地区5.0~8.1级的部分中强地震共30个震例,并得出加卸载响应比异常的时间尺度与未来地震震级之间的拟合函数。结果表明,地震前加卸载响应比异常的时间尺度与未来地震的震级具有正变关系,即震级越高,地震前加卸载响应比异常的时间尺度越长。根据加卸载响应比异常的时间尺度与震级之间的关系可以估计未来地震的发震时间,同时,可以确定加卸载响应比时空扫描过程中时问长度的大小。  相似文献   
104.
INTRODUCTIONThe structural mine earthquake in coal mines refers to the quake induced by excavationengineeringthatleadstorupturingor change of geological structure and weakness surfaceintheinteriorof rock mass.According to the origin,mine earthquakes can b…  相似文献   
105.
106.
107.
108.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
109.
Laguerre  Michel S. 《GeoJournal》2005,64(1):41-49
This paper briefly reviews the sociological literature on the “New” Chinatown phenomenon stressing its structural location vis-à-vis the “Old” Chinatown and the homeland. It defines the New Chinatown as a panethnopolis, that is a global neighborhood with a majority population of Chinese immigrants and of other ethnic groups of mostly Asian descent. It analyzes more particularly the formation, development, and integration of San Francisco’s Richmond District’s New Chinatown into both the city where it is located and the network of transglobal sites to which it belongs. It provides an interpretation of the New Chinatown as a cultural enclave within the context of globalization theory.  相似文献   
110.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号