全文获取类型
收费全文 | 9133篇 |
免费 | 2045篇 |
国内免费 | 1923篇 |
专业分类
测绘学 | 843篇 |
大气科学 | 1137篇 |
地球物理 | 3470篇 |
地质学 | 4759篇 |
海洋学 | 885篇 |
天文学 | 499篇 |
综合类 | 748篇 |
自然地理 | 760篇 |
出版年
2024年 | 64篇 |
2023年 | 142篇 |
2022年 | 268篇 |
2021年 | 324篇 |
2020年 | 352篇 |
2019年 | 409篇 |
2018年 | 299篇 |
2017年 | 370篇 |
2016年 | 392篇 |
2015年 | 435篇 |
2014年 | 490篇 |
2013年 | 557篇 |
2012年 | 568篇 |
2011年 | 604篇 |
2010年 | 459篇 |
2009年 | 590篇 |
2008年 | 550篇 |
2007年 | 664篇 |
2006年 | 585篇 |
2005年 | 484篇 |
2004年 | 453篇 |
2003年 | 432篇 |
2002年 | 392篇 |
2001年 | 351篇 |
2000年 | 368篇 |
1999年 | 346篇 |
1998年 | 335篇 |
1997年 | 295篇 |
1996年 | 278篇 |
1995年 | 216篇 |
1994年 | 216篇 |
1993年 | 187篇 |
1992年 | 152篇 |
1991年 | 99篇 |
1990年 | 99篇 |
1989年 | 88篇 |
1988年 | 65篇 |
1987年 | 42篇 |
1986年 | 14篇 |
1985年 | 12篇 |
1984年 | 10篇 |
1983年 | 1篇 |
1982年 | 8篇 |
1981年 | 2篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 7篇 |
1977年 | 7篇 |
1972年 | 1篇 |
1954年 | 8篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
在小宽断裂带构造解析基础之上,根据地质资料以及前人提供的岩石物理学参数建立了梨树断陷区的二维地质和数值模型。进行了构造应力场数值模拟,分析了梨树断陷小宽断裂带断陷期小宽断裂带断陷期在沙河子期(K1sh)、营城期(K1yc)、登楼库期(K1d)的构造应力场特征。模拟结果显示:(1)沙河子期在左旋走滑应力状态下,小宽断裂带处于近NE—SW方向的拉张应力状态,剪应力在沿着断裂带SW—NE走向逐渐减小; (2)营城期在右旋走滑的应力状态下,小宽断裂带处于近NW—SE向的拉张力状态,剪应力最大值位于断裂带的最中间部位;(3)登楼库期在左旋走滑的应力状态下,断裂带处于SWW—NEE向的张拉应力状态,剪应力最大值位于断裂带西南段。 相似文献
92.
93.
针对海上油田储层特点筛选黏土防膨剂,对控制储层水敏伤害和保障整个油田的持续高效开发有非常重要的意义。综合多种防膨剂评价方法的长处,采用静态与动态相结合的实验评价方法,筛选了适用于海上某油田注水开发的黏土防膨剂。对于优选出质量分数为1%的FP一3A黏土防膨剂,静态评价离心法防膨率为79.1%,X.射线衍射法防膨率为54.6%,膨胀仪法防膨率为80.7%,岩心线性膨胀率为0.73%,每100g静态吸附量0.29g;动态评价渗透率保留率大于70%,最佳注入浓度0.5%~1.0%,且渗透率波动范围小,防膨效果稳定且作用时间长,适于海上某油田注水开发应用。 相似文献
94.
大型海底热液硫化物矿体的形成机制是涉及多种控制因素的复杂地质过程,其中热液流体同海水的混合扮演着重要角色。大洋钻探计划(ODP)资料表明在大西洋TAG区热液硫化物矿体内部,热液流体同经过改造的海水之间发生着广泛的混合作用,这个过程在很大程度上控制着海底热液硫化物矿体的内部结构和化学组成。以TAG热液硫化物矿体为例,利用数值模拟方法模拟了热液流体与经过不同程度改造的海水的混合过程,试图探讨海水与热液流体混合在热液硫化物矿体形成中的作用。模拟计算结果表明:(1)来自矿体深部的热液流体与经围岩加热的下渗海水的混合是造成TAG热液活动区硬石膏大量沉淀的重要原因;(2)在热液流体与海水的混合过程中,混合流体的化学性质和矿物沉淀情况在330~310℃上下发生了较大变化,330~310℃是一个特殊的温度区域;(3)利用数值计算结果探讨了TAG热液活动区不同区块(TAG-1,TAG-2和TAG-5等)的流体混合作用和热液活动过程。 相似文献
95.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation. 相似文献
96.
Reservoirs where tectonic fractures significantly impact fluid flow are widespread. Industrial-level shale gas production has been established from the Lower Cambrian Niutitang Formation in the Cen'gong block, South China; the practice of exploration and development of shale gas in the Cen'gong block shows that the abundance of gas in different layers and wells is closely related to the degree of development of fractures. In this study, the data obtained from outcrop, cores, and logs were used to determine the developmental characteristics of such tectonic fractures. By doing an analysis of structural evolution, acoustic emission, burial history, logging evaluation, seismic inversion, and rock mechanics tests, 3-D heterogeneous geomechanical models were established by using a finite element method (FEM) stress analysis approach to simulate paleotectonic stress fields during the Late Hercynian—Early Indo-Chinese and Middle-Late Yanshanian periods. The effects of faulting, folding, and variations of mechanical parameters on the development of fractures could then be identified. A fracture density calculation model was established to determine the quantitative development of fractures in different stages and layers. Favorable areas for shale gas exploration were determined by examining the relationship between fracture density and gas content of three wells. The simulation results indicate the magnitude of minimum principal stress during the Late Hercynian — Early Indo-Chinese period within the Cen'gong block is −100 ∼ −110 MPa with a direction of SE-NW (140°–320°), and the magnitude of the maximum principal stress during the Middle-Late Yanshanian period within the Cen'gong block is 150–170 MPa with a direction of NNW-SSE (345°–165°). During the Late Hercynian — Early Indo-Chinese period, the mechanical parameters and faults play an important role in the development of fractures, and fractures at the downthrown side of the fault are more developed than those at the uplifted side; folding plays an important role in the development of fractures in the Middle-Late Yanshanian period, and faulting is a secondary control. This 3-D heterogeneous geomechanical modelling method and fracture density calculation modelling are not only significant for prediction of shale fractures in complex structural areas, but also have a practical significance for the prediction of other reservoir fractures. 相似文献
97.
浮托安装进船过程中护舷碰撞力实测研究 总被引:1,自引:1,他引:1
浮托安装法广泛应用于大型组块海上安装。导管架平台上部组块浮托安装进船过程中,风、浪、流引起的浮托驳船横向运动造成浮托驳船与导管架桩腿的碰撞,碰撞力可能会对导管架结构造成损伤。陆丰7-2上部组块浮托安装中,为了监测碰撞力大小,设计了碰撞力海上监测系统。通过在导管架外侧四个桩腿上安装光纤光栅应变传感器对碰撞过程中导管架桩腿进行应力监测,进而计算碰撞力。对碰撞过程,载荷作用位置、方向进行简化,并对载荷大小及垂向作用位置对计算的影响进行了研究。结构分析模型简化后,测点von-Mises应力与碰撞力大小成正比,对导管架整体结构建模计算并取局部结构计算比例系数,结合应力实测数据计算出进船过程中驳船对导管架桩腿碰撞力。 相似文献
98.
99.
综合运用地质、钻井、生物标志物、碳同位素、储层流体包裹体等资料,在油气分布特征和来源分析的基础上,探讨了控制西湖凹陷孔雀亭气田油气成藏及富集的主要因素。研究结果表明,孔雀亭气田油气主要分布在始新统平湖组储层内,具有"上油下气"的纵向分布特征,以断块型凝析气藏为主,原油及天然气来源于自身和西部次洼平湖组源岩联合供烃。孔雀亭气田油气成藏及富集主要受断层封堵性、砂体厚度和储层物性及流体充注历史的联合控制,断层封堵性控制了油气藏的含油气性,砂体厚度和储层物性制约了油气层厚度和含油气饱和度,流体充注历史决定了油气藏的现今赋存相态。 相似文献
100.
Jun Chen Zhen-Yu Yin Ye-Shuang Xu Suksun Horpibulsuk 《Marine Georesources & Geotechnology》2016,34(5):420-430
This article presents a case history of determination of effective depth of prefabricated vertical drains (PVDs) under embankment loading on a very soft clay deposit in central China, near Jiujiang, Jiangxi Province. The height of the embankment was 5.3 m and construction time was about one year. The PVDs were installed to a depth of 8.5 m at a spacing of 1.5 m in a triangular pattern. Field observations and the finite element method (FEM) were employed to analyze the performance of the soft deposit during embankment construction. The influential depth of the embankment loading was evaluated based on settlement, excess pore pressure, and stress increase in subsoil, both from the observed data and FEM analysis. The effective PVD depth was determined in the following ways: (1) the depth of 5% subsoil settlement of surface settlement; (2) vertical stress increase in subsoil of 25% in-situ stress; and (3) consolidation time/PVD depth relation by FEM. Based on the analysis, the effective depth of PVDs was determined to be between 10 and 12.8 m for this field case. 相似文献