首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
  国内免费   3篇
测绘学   2篇
地球物理   9篇
地质学   5篇
海洋学   38篇
自然地理   3篇
  2024年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
With processing and interpretation of 25 000 km full-coverage multibeam swath data fromthe eastern South China Sea, it is found that NE-trending and NW-trending linear morphological features such as scarps, horsts and grabens, govern the central part (14°- 17° N) of eastern subbasin. Compared with reflection seismic profiles, these NE-trending linear morpho-structures are considered to be the representation of basement structures on seabed and can be divided into three linear structural zones. The trend of the central zone is NE45°-50° occurring around extinct spreading center, the trend of the second zone is NE70° - 78° on both sides of the central one and the trend of the third zone is about NE60° just on the north of the second one. These three NE-trending linear zones are formed in late-stage NW - SE-trending seafloor spreading of the eastern subbasin along NW-trending linear faults, and respectively correspond to three spreading episodes: 17.0- 19.0 Ma (5d-5e), 19.0 - 21.0 Ma (5e-6a) and 21.0  相似文献   
42.
Precise Multibeam Acoustic Bathymetry   总被引:7,自引:0,他引:7  
The maximum error in ocean depth measurement as specified by the International Hydrographic Organization is 1% for depth greater than 30m. Current acoustic multibeam bathymetric systems used for depth measurement are subject to errors from various sources which may significantly exceed this limit. The lack of sound speed profiles may be one significant source of error. Because of the limited ability of sound speed profile measurement, depth values are usually estimated using an assumed profile. If actual sound speed profiles are known, depth estimate errors can be corrected using ray-tracing methods. For depth measurements, the calculation of the location at which a sound pulse impinges on the sea bottom varies with the variation of the sound speed profile. We demonstrate that this location is almost unchanged for a family of sound speed profiles with the same surface value and the same area under them. Based on this observation, we can construct a simple constant-gradient equivalent sound speed profile to correct errors. Compared with ray-tracing methods, the equivalent sound speed profile method is more efficient. If a vertical depth is known (or independently measured), then depth correction for a multibeam system can be accomplished without knowledge of the actual sound speed profile. This leads to a new type of precise acoustic multibeam bathymetric system.  相似文献   
43.
Changes of bathymetry derived from multibeam sonars are useful for quantifying the effects of many sedimentary, tectonic and volcanic processes, but depth changes also require an assessment of their uncertainty. Here, we outline and illustrate a simple technique that aims both to quantify uncertainties and to help reveal the spatial character of errors. An area of immobile seafloor is mapped in each survey, providing a common ‘benchmark’. Each survey dataset over the benchmark is filtered with a simple moving-averaging window and depth differences between the two surveys are collated to derive a difference histogram. The procedure is repeated using different length-scales of filtering. By plotting the variability of the differences versus the length-scale of the filter, the different effects of spatially uncorrelated and correlated noise can be deduced. The former causes variability to decrease systematically as predicted by the Central Limit Theorem, whereas the remaining variability not predicted by the Central Limit Theorem then represents the effect of spatially correlated noise. Calculations made separately for different beams can reveal whether problems are due to heave, roll, etc., which affect inner and outer beams differently. We show how the results can be applied to create a map of uncertainties, which can be used to remove insignificant data from the bathymetric change map. We illustrate the technique by characterizing changes in nearshore bed morphology over one annual cycle using data from a subtidal bay, bedrock headland and a banner sand bank in the Bristol Channel UK.  相似文献   
44.
TC2002极坐标测量系统在大型天线检测中的应用   总被引:1,自引:0,他引:1  
单台全站仪极坐标测量系统应用于高精度的测量和安装工作中,必须采用特殊的作业手段和数据处理方法才能达到亚毫米的精度。文中提出了一种坐标转换方法,将其应用于大型多波束天线的安装检测过程中,实测结果表明该方法达到较好的效果。  相似文献   
45.
系统总结了多波束测深点的误差源,给出了测深点误差估计模型。通过对Seabat 8101型多波束测深仪单呯测深点的误差影响估计,得出了各误差的传播影响规律及其影响量级,对多波束数据处理和测量成果质量评估具有一定的参考价值。  相似文献   
46.
In order to monitor the Stromboli submarine slope after the 30 December 2002 landslide and tsunami, repeated marine surveys were carried out offshore of Sciara del Fuoco. The morphological changes and depositional processes that brought to the gradual filling of the slide scar have been studied in detail. Thirteen surveys in a period of little more than 4 years provided a unique opportunity to reconstruct the morpho-sedimentary evolution of the submarine slope and its recovery after the mass-wasting event. The scar has been progressively filled with lava and volcanoclastic debris; in the first month and a half, the filling rate was very high due to the entrance of lava flows into the sea and to the morphological readjustment of the slope; in the following months/years the rate dramatically decreased when the eruptive vents moved upwards and the eruption finally stopped. After 4 years (February 2007) more than 40% of the scar was already filled. In early 2007, a new eruption occurred and a lava delta was constructed in the 2002 scar, influencing the natural readjustment of the slope; therefore, our reconstruction only encompasses the period between the 2002 and 2007 eruptions.The swath bathymetry reconstruction of geometry and volume of scar filling during the period 2002–2007 evidenced a punctuated and fast shift of depocenters and debris emplacement through avalanching processes. This process quickly obliterated the features produced by the 2002 tsunamigenic landslide so that a major question about the preservation potential of mass-wasting features on active volcanic flanks emerges.  相似文献   
47.
利用2004年10-12月一个航次的测量数据,分析了长江口附近某海区的声速结构特点,发现该海域的声速结构受长江冲淡水的影响非常大,随着潮汐的变化,声速日变化量较大,具有类似潮周期现象,即随着落潮大量淡水和泥沙的注入以及涨潮时新鲜海水的补充,声速的时空变化较大,致使多波束系统的波束导向和声线跟踪偏差较大,很大程度的地影响了多波束系统的勘测精度(特别是边缘波束对应的水深数据误差更大)。针对于此,给出了几点改进建议。  相似文献   
48.
A fast, simple method is presented to obtain acoustic seabed segmentation from multibeam sonar backscatter data, for situations where processed backscatter curves are already available. Unsupervised statistical clustering is used to classify multibeam sonar backscatter curves in their entirety, with the curves essentially treated as geometrical entities. High variability in the backscatter curves is removed by along-track averaging prior to clustering, and no further preprocessing is required. The statistical clustering method is demonstrated with RESON 8125 multibeam sonar data obtained in two bathymetrically complex environments. These are a sandwave field in Keppel Bay, Queensland, and an area of inter-island sand, reef, seagrass, and rhodolith beds in Esperance Bay, Western Australia. The resulting acoustic charts are visually compelling. They exhibit high spatial coherence, are largely artifact free, and provide spatial context to comparatively sparse grab samples with relatively little effort. Since the backscatter curve is an intrinsic property of the seafloor, the mappings form standalone charts of seafloor acoustic properties. In themselves they do not need ground truthing. Conceptually, use of the full angular backscatter curve should form the primary means of obtaining acoustic seabed segmentation. However, this is dependent on the scale and configuration of seabed backscatter features compared to the dimensions of the averaged swathe used to obtain reliable realisations of the backscatter curve.  相似文献   
49.
胶州湾湾口海底沙波地形地貌特征及其活动性研究   总被引:2,自引:0,他引:2  
利用多波束、侧扫声纳以及单道地震资料对胶州湾湾口潮流作用下形成的典型海底沙波地貌的平面形态、剖面特征和分布特点进行了分析研究。根据实测的水文资料计算了不同潮流流速下沙波的瞬时移动速度,推测了直脊型沙波和新月型沙波的形成]化过程:区内新月型沙波在西向优势流的作用下大约以50m/a的速度向西迁移,直脊型沙波则在两端方向不一致的优势流长期作用下,发生逆时针旋转,同时在往复流的作用下以一个平衡位置左右摆动;就地貌形态而言,新月型沙波是不稳定的,直脊型沙波达到相对平衡状态。  相似文献   
50.
Hydrographic quality bathymetry and quantitative acoustic backscatter data are now being acquired in shallow water on a routine basis using high frequency multibeam sonars. The data provided by these systems produce hitherto unobtainable information about geomorphology and seafloor geologic processes in the coastal zone and on the continental shelf.Before one can use the multibeam data for hydrography or quantitative acoustic backscatter studies, however, it is essential to be able to correct for systematic errors in the data. For bathymetric data, artifacts common to deep-water systems (roll, refraction, positioning) need to be corrected. In addition, the potentially far greater effects of tides, heave, vessel lift/squat, antenna motion and internal time delays become of increasing importance in shallower water. Such artifacts now cause greater errors in hydrographic data quality than bottom detection. Many of these artifacts are a result of imperfect motion sensing, however, new methods such as differential GPS hold great potential for resolving such limitations. For backscatter data, while the system response is well characterised, significant post processing is required to remove residual effects of imaging geometry, gain adjustments and water column effects. With the removal of these system artifacts and the establishment of a calibrated test site in intertidal regions (where the seabed may be intimately examined by eye) one can build up a sediment classification scheme for routine regional seafloor identification.When properly processed, high frequency multibeam sonar data can provide a view of seafloor geology and geomorphology at resolutions of as little as a few decimetres. Specific applications include quantitative estimation of sediment transport rates in large-scale sediment waves, volume effects of iceberg scouring, extent and style of seafloor mass-wasting and delineation of structural trends in bedrock. In addition, the imagery potentially provides a means of quantitative classification of seafloor lithology, allowing sedimentologists the ability to examine spatial distributions of seabed sediment type without resorting to subjective estimation or prohibitively expensive bottom-sampling programs. Using Simrad EM100 and EM1000 sonars as an example, this paper illustrates the nature and scale of possible artifacts, the necessary post-processing steps and shows specific applications of these sonars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号