首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   3篇
  国内免费   47篇
测绘学   1篇
地球物理   13篇
地质学   157篇
海洋学   9篇
天文学   123篇
综合类   2篇
自然地理   7篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   11篇
  2014年   12篇
  2013年   10篇
  2012年   4篇
  2011年   30篇
  2010年   24篇
  2009年   28篇
  2008年   28篇
  2007年   19篇
  2006年   17篇
  2005年   10篇
  2004年   14篇
  2003年   13篇
  2002年   11篇
  2001年   1篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
301.
A suite of 36 surface sediment samples, taken between 10 and 100 m water depth in Mejillones Bay (Northern Chile), were analyzed for mineralogy, grain size, total organic carbon, Al, and heavy metal content (Cd, Zn, Ni, Mn, V, Mo). Quartz and feldspars were the main lithogenic minerals and carbonate the predominant biogenic mineral. Sediments were fine sands in the shallow zone and organic silt in the deeper zone.

Enrichment Factor and Factor Analysis approach showed that the presence of Mn in the marine sediment of Mejillones is due to a partial influence of continental input, while all other metals are not supported by lithogenic debris. Although all metals showed high concentrations in the marine sediment of Mejillones Bay, comparison between metal concentration in surface sediments and preindustrial levels in this bay, show that present values agree with natural levels.  相似文献   

302.
This study aims at understanding the physico-chemical interactions between the saturated brine and the rocks enclosing the underground salt workings in Lorraine (eastern France). These anhydrite-rich and argillaceous rocks were characterized in terms of mineralogy, micro-texture and connected porosity. Then, the two main lithofacies, massive anhydrite and anhydrite-rich argillite, were immersed in brine during more than 1 year. During this batch experiment, the argillites were affected by macroscopic splitting, contrarily to the massive anhydrite. Micro-texture and brine chemical analyses clearly show the swelling due to the hydration of anhydrite into gypsum inside the argillites, whereas hydration occurs superficially on the massive anhydrite, due to its very low permeability. Anhydrite–gypsum transformation is promoted by the presence of dissolved strontium and potassium in saturated brine. The low activity of water in saturated brine does not allow the clay fraction to swell significantly during the experiment. Thus, the expansion resulting from the hydration of anhydrite into gypsum might be responsible of the splitting of argillite in a saturated brine environment. The superficial anhydrite hydration on massive anhydrite can be explained by the low amount of connected porosity (less than 1%).  相似文献   
303.
High-resolution X-ray computed tomography (HRXCT) provides unique information of the geological and metallurgical significance for gold and related ore minerals in the supergiant Grasberg porphyry Cu–Au deposit. Digital radiographs have proved to be an effective means of screening samples for the presence of gold for HRXCT studies. Digital radiograph effectiveness is limited by the thickness of samples (typically to ≤2 cm), as well as the associated minerals. Thus, preselecting samples for gold studies using HRXCT is most effective using digital radiographs combined with assay information. Differentiating between metallic mineral grains with relatively small differences in density, e.g., bornite (5.1 g/cm3) from chalcopyrite (4.2 g/cm3), is relatively straightforward for isolated monominerallic grains or composites in a similar lower-density matrix, but difficulties are encountered with the interpretation of typical intergrown ore minerals. X-ray beam-hardening artifacts lead to inconsistency in attenuation determination, both within and among slice images, complicating quantitative processing. However, differentiation of chalcopyrite and bornite has been successful in smaller-diameter (≤22-mm) cores of Grasberg ores. Small-diameter (≤10 mm) cores of the Grasberg stockwork Cu–Au ore were analyzed using HRXCT methods scanned at the minimum spacing currently available (7.5 μm), and data reduction protocols using the Blob3D program were modified to improve the quantification of grain sizes and shapes. Grains as small as 6.5 μm have been identified. All of these grains are in direct contact with chalcopyrite, providing support for gold distribution in porphyry copper systems being a result of exsolution from copper sulfides. HRXCT scanning (±digital radiography) precisely defines the in situ location of mineral grains of interest within a sample, which then can be studied in conventional petrographic sections, and other types of analytical studies conducted, e.g., gold trace element geochemistry.  相似文献   
304.
Geology and stratigraphy of King crater, lunar farside   总被引:1,自引:0,他引:1  
Clementine and photographic data sets have been used to investigate the crustal stratigraphy and geology of King crater on the lunar farside (120°E, 5.5°N). Pre-existing topographic regimes or stress fields dominate many structures in the crater, which has excavated materials from depths of up to 14 km. The upper crust in the area is noritic anorthosite, grading to a more anorthositic signature with depth. A possible batholithic intrusion is also present in a 15-km-wide band, extending from the southern crater floor to at least 50 km north of King, and from near-surface levels down to at least the excavation depth of the crater. It is generally feldspathic, but is cut by mafic dykes now visible in the north wall. King also shows evidence for the presence of a cryptomare, exposed in regions of the peaks and in dark halo craters within the ejecta blanket. Localized olivine-bearing mineralogies are observed on the central peaks, suggesting isolated pockets of troctolitic mineralogies to have been present at 8- to 14-km depths. Copious volumes of crystalline melt produced from the impact event cover King’s floor to a maximum thickness of 30-60 m, and have pooled in a number of natural depressions outside of the main crater. The main pool in the pre-existing A1-Tusi crater has a minimum depth of 150 m. Domes on the crater floor are verified as nonvolcanic in origin, and did not act as a source for any of the lava-like materials in King.  相似文献   
305.
A series of natural silica impactite samples from Chicxulub (Mexico) was investigated by Raman microprobe (RMP) analysis. The data yield evidence for high-pressure shock metamorphism in the rock. The impactite contains three polymorphs of silica: the original α-quartz, and two high-pressure varieties – coesite and disordered quartz representing various degrees of crystallinity. We found systematic changes in frequencies and half-widths of the Raman bands, caused by increasing irregularities of bond-lengths and bond-angles and a general breaking-up of the structure as a result of impact events. Therefore, RMP is an adequate tool for measuring the crystallinity of disordered quartz. The half-width Γ and the frequency ω of the symmetric SiOSi stretching vibrational band (A1 mode) of the SiO4 tetrahedra are the most amenable parameters for estimating the degree of crystallinity. In well-crystallized quartz, Γ=5 cm?1 and ω=464 cm?1, while in highly disordered quartz this line shifts up to ω=455 cm?1 and broadens up to Γ=30 cm?1. The Raman lineshapes appear to depend strongly on the degree of lattice disorder subsequent to impact events. To cite this article: M. Ostroumov et al., C. R. Geoscience 334 (2002) 21–26  相似文献   
306.
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO2, SO2, and H2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO2, CO2, H2S, and CH4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO4H2O for the ocean, CO2, H2S, and CH4 clathrates would float but SO2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.  相似文献   
307.
This study evaluates the pollution load on a creek based on the physicochemical and mineralogical properties of old tailings. The Sanggok mine is one of the largest lead–zinc producers in the Hwanggangri mining district, Republic of Korea. The vertical profile of the old tailings in the mine area can be divided into three units based on color change, and mineralogical and textural variations, as well as physical and chemical properties. Unit I (surface accumulation and oxidized heterogeneous tailing soil) has lower pH and higher Eh than unit II (originally unoxidized dumped tailing soil) and unit III (pebble-bearing bottom soil). The conductivity data indicates that unit I and II have very high values compared to unit III and basement. The mine area consists mainly of carbonate rocks; however, mineral constituents of tailing soil and sediments near the mine were mainly composed of quartz, mica, feldspar, amphibole, calcite, dolomite, magnesite, and clay minerals. Units I and II are characterized by high abundances of siderite, locally pyrite, and dolomite. Precipitates in the mining drainage mainly included: smectite, illite, berthierine, quartz, siderite, hexahydrite, and Ca-ferrate. Among the separated metallic minerals, tailing soils and sediments of highly concentrated toxic metals are found: some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite, various hydroxide, and uncertain secondary minerals. Units I and II are characterized by relatively high concentrations of Ca, Fe, Mn and low contents of Al, Mg, K, Na, Ti, rare earth elements (REEs) that correlated with the proportion of secondary minerals. Potentially toxic elements such as Ag, As, Cd, Cu, Pb, Sb, and Zn are highly enriched in the upper two units. This metal concentration can be influenced by changes in the depth because of oxic and suboxic zonal distribution. The removal zone (unit I) has probably migrated below the elevation of the maximum enrichment layer due to deepening of the oxic/suboxic boundary. In most of the materials, the enrichment index is higher than 3.62. The highest value of 42.55 is found in the oxidation surface soils of the tailing pile. An average enrichment index of the profiles and precipitates are 27.62 and 22.62, respectively. Rocky basement soils have an average enrichment index of 6.63, which is influenced by overlying the tailing pile. The water quality and habitat of the Sanggok creek are severely polluted. Polluted surface water may also negatively impact the agricultural soil and groundwater.  相似文献   
308.
王楠  吴才来  秦海鹏 《地质论评》2017,63(4):981-1000
义敦岛弧是位于松潘—甘孜褶皱带和羌塘地体之间的三叠纪火山岛弧。稻城岩体和海子山岩体分别为义敦岛弧上出露的晚三叠世和白垩纪花岗质岩体。结合岩石地球化学,以及偏光显微镜和电子探针(EPMA)、扫描电镜(SEM)对上述岩体进行了系统的矿物学研究,结果表明:两个岩体的主要造岩矿物为斜长石(中长石—更长石),钾长石(正长石)、石英和黑云母(铁叶云母—铁质黑云母),副矿物为锆石、榍石、磁铁矿和磷灰石等;黑云母的成分表明两个岩体的源区均为壳幔混源。稻城岩体属高钾钙碱性系列,具过铝质特征的花岗岩,海子山岩体为高钾钙碱性—钾玄岩系列,同样具过铝质特征。根据锆元素饱和浓度温度计和稀土元素饱和浓度温度计对两个岩体进行了温度限定,稻城岩体岩浆形成的平均上限温度为783℃,海子山岩体岩浆形成时的平均上限温度为844℃。结合前人研究结果,笔者等认为稻城岩体为高分异I型花岗岩,可能为与扬子克拉通有关的晚古元古代至早中元古代的下地壳物质,在甘孜—理塘洋向西俯冲和闭合之后的弧—陆同碰撞背景下,因幔源岩浆的底侵作用而发生部分熔融,同时伴有少量的亏损地幔成分加入,因密度上升至中上—上地壳深度侵位,并且侵位后经历了快速的冷却过程,在侏罗纪之初冷却至300℃以下;海子山岩体为与俯冲有关的造山后伸展环境下形成的白垩纪A2型花岗岩,岩浆来源同样为地壳物质伴有少量地幔物质混合而成,且在地壳中侵位深度较浅,之后经历快速的冷却过程。  相似文献   
309.
高雪  孟健寅 《岩石学报》2017,33(7):2161-2174
义敦地体位于三江特提斯成矿域中北段,晚三叠世和晚白垩世斑岩-矽卡岩型Mo-Cu多金属成矿作用强烈。铜厂沟Mo-Cu矿床位于义敦地体最南端,是近年来该区新探明的Mo-Cu矿床之一,已探明资源量142.5Mt。矽卡岩在铜厂沟矿区广泛出露,是该矿区最主要的赋矿岩石。根据矿物组合及共生关系,可将矽卡岩划分为石榴子石矽卡岩、透辉石矽卡岩和透闪石矽卡岩三种类型。通过详细的地质填图和钻孔岩心编录,发现铜厂沟矿区矽卡岩矿物组合受花岗闪长斑岩体与大理岩空间分布的控制:(1)由大理岩向外依次发育透辉石矽卡岩→透闪石矽卡岩→石榴子石矽卡岩;(2)由浅至深,石榴子石粒度逐渐变大;③矿化与透闪石、绿帘石等退化蚀变矿物密切相关,矿体多形成于外接触带。矽卡岩中最主要的矿物是石榴子石,多呈自形粒状或粒状集合体产出,颜色较深,均质性,以钙铝榴石为主(62.2%~78.3%),其次为钙铁榴石(16.7%~34.2%),少量锰铝榴石、铁铝榴石和镁铝榴石,属于钙铝榴石-钙铁榴石固溶体系列(Gro62-78And17-34Spe+Pyr+Alm2-6)。石榴子石Fe~(2+)/Fe~(3+)比值变化范围为0.00~0.20,平均值为0.06,指示石榴子石形成于酸性的氧化环境。石榴子石的δ~(18)OSMOW变化范围为5.2‰~9.5‰,反映矽卡岩可能直接继承斑岩体的氧同位素组成;金属硫化物具有较为均一的S-Pb同位素范围(δ~(34)S(CDT)=-0.7‰~1.4‰;~(206)Pb/~(204)Pb=18.332~18.694,~(208)Pb/~(204)Pb=38.454~39.088,~(207)Pb/~(204)Pb=15.588~15.663),表明成矿流体和成矿物质均来源于壳源的长英质岩浆。  相似文献   
310.
We present methods for terrain classification on 4 Vesta using Dawn Framing Camera (FC) color information derived from laboratory spectra of HED meteorites and other Vesta-related assemblages. Color and spectral parameters have been derived using publicly available spectra of these analog materials to identify the best criteria for distinguishing various terrains. We list the relevant parameters for identifying eucrites, diogenites, mesosiderites, pallasites, clinopyroxenes and olivine + orthopyroxene mixtures using Dawn FC color cubes. Pseudo Band I minima derived by fitting a low order polynomial to the color data are found to be useful for extracting the pyroxene chemistry. Our investigation suggests a good correlation (R2 = 0.88) between laboratory measured ferrosilite (Fs) pyroxene chemistry vs. those from pseudo Band I minima using equations from Burbine et al. (Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Planetary Science 44, 1331–1341). The pyroxene chemistry information is a complementary terrain classification capability beside the color ratios. We also investigated the effects of exogenous material (i.e., CM2 carbonaceous chondrites) on the spectra of HEDs using laboratory mixtures of these materials. Our results are the basis for an automated software pipeline that will allow us to classify terrains on 4 Vesta efficiently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号