首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   16篇
地球物理   1篇
地质学   41篇
综合类   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2004年   2篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
Metapelite-derived migmatites (“bedded migmatites”) formed in the low-pressure/high-temperature (LPHT) Cooma Complex, southeastern Australia, contain magma (neosome and leucosome) confined to the metapelitic beds in which they were generated. The metapsammitic beds were more ductile than the metapelitic beds (and the metapelitic parts of graded beds), which underwent fracture and boudinage, thereby providing space for the magma, though some also occurs in axial surface folia. Transitions from bedded to stromatic migmatites can be seen, but the magma mainly remained in the metapelites, even in the most strongly deformed stromatic migmatites. This, together with boudinage and transposition of the leucosome, as well as microstructural evidence of quartz recrystallization, suggest that much or most of the stromatic layering was formed by solid-state deformation. In contrast, magmas (neosomes) formed by partial melting of feldspathic metapsammites at Cooma moved out of their parent rocks, and coalesced into veins and small intrusions of diatexite, because (1) the host rocks deformed more homogeneously, and no interboudin space was made for the melts, and (2) the melt escape threshold was exceeded, probably with the assistance of deformation. Metapsammite melting occurred after solidification of the metapelite-derived magma, and the mobile metapsammite-derived magma (diatexite) disrupted and incorporated fragments of the metapelitic migmatites. The metapsammite-derived magma, together with this solid metapelitic material, locally coalesced into bodies closely resembling the Cooma Granodiorite.  相似文献   
12.
A single zircon geochronological study of gneisses from the Obudu Plateau of southeastern Nigeria, using the evaporation technique, indicates that zircons recorded several Precambrian high-grade metamorphic events (Eburnean and Pan-African). Igneous and multifaceted metamorphic zircons yielded 207Pb/206Pb ages of 2062.4 ± 0.4 Ma, 1803.8 ± 0.4 Ma and 574 ± 10 Ma, respectively and confirm for the first time that granulite-facies metamorphism affected the basement of southeastern Nigeria, resulting in the formation of charnockites and granulitic gneisses. The Pan-African high-grade event was coeval with the formation of granulites in Cameroon, Togo and Ghana and resulted from collisional processes during continental amalgamation to form the Gondwana supercontinent. The sources of the sediments, which were deposited at ≈605 Ma and metamorphosed at 574 Ma, comprise older igneous and metamorphic protoliths (including inherited xenocrystic zircons up to 2.5 Ga in age). The Palaeoproterozoic zircons seem to have survived Pan-African melting.  相似文献   
13.
云南哀牢山变质流体特征   总被引:5,自引:0,他引:5  
李文  李光麟 《岩石学报》2000,16(4):649-654
对云南哀牢山的变质岩、混合岩及脉岩中包裹体的化学成分及碳、氢、氧进行研究,结果表明,哀牢山变质流体有多种来源,流体成分复杂,有互不混溶的流体水、CO2有机物。水主要来源于古海水和大气降水,少部分来源于深部岩降水;有机质来源于沉积岩生物质;CO2多数来源于碳酸盐岩,少数来源于有仙质的氧化分解,这些流体受构造运动的驱动而活化迁移,成为成矿物质的搬运介质,参与了本区岩石的改造,是形成本区伟晶岩的重要流体  相似文献   
14.
The Swakop River exposes a unique structural section into the root of the Pan-African Damara orogenic belt (DOB) in Namibia formed as a result of collision between the Congo and the Kalahari cratons from ca. 550 to 500 Ma. The Central Zone of the Damara orogenic belt is characterized by amphibolite to granulite facies metamorphism accompanied by intense partial melting. Three tectonic units are defined in the Central Zone based on the proportion and distribution of the granitic fraction, namely (1) a lower unit dominated by diatexites and comprising plutons of homogeneous granites, (2) a middle unit composed by metatexites with mainly a metasedimentary protolith, and (3) an upper unit corresponding to metamorphic rocks with intrusive leucogranitic sills and laccoliths. The increase in the granitic fraction with structural depth is suggesting an increase in the degree of partial melting and implies a relative inefficiency of magma mobility from the source to higher structural levels. The transition from metatexites of the middle unit to diatexites and granites of the lower unit is interpreted as reflecting the former transition from partially molten rocks to a crustal-scale magmatic layer. Mushroom-shaped granitic plutons in the lower unit are consistent with their emplacement as diapirs and the development of gravitational instabilities within the magmatic layer. In the middle unit, granitic veins concordant and discordant to the synmigmatitic foliation localized in structurally-controlled sites (foliation, boudin’s necks, shear zones, fold hinges) indicate that, within the partially molten zone, deformation plays the dominant role in melt segregation and migration at the outcrop scale. Melt migration from the partially molten zone to the intrusive zone is related to the build-up of an interconnected network of dikes and sills with diffuse contacts with the migmatitic hosts in the middle unit. In contrast, the upper unit is characterized by homogeneous leucogranitic plutons in sharp intrusive contact with genetically unrelated host rocks suggest that part of the melt fraction has migrated upward from its source to an intrusive zone.  相似文献   
15.
《地学前缘(英文版)》2019,10(6):2101-2115
Veins and dikes are often oriented subparallel to the axial surfaces of folds in the adjacent layered or foliated rocks.This implies an awkward situation,since veins would lay in planes close-to-parallel to the maximum stretching axis.A series of geometric models have been conceived in order to gain insight into the possible mechanisms for their formation.The models are based on the analysis of a varied selection of field structures and on the review of similar structures in the existing literature.A first categorization consists on distinguishing between axial-planar veins achieved by either progressive or polyphase deformation.Five models of axial-planar veins resulting from progressive deformation are described and discussed:(1) fold-related veins associated with the standard folding mechanisms,(2) fracture arrays localized along the short limbs of folds(asymmetric fold-related veins),(3) folds associated with rotation of extension veins(vein-related folds),(4) high strain and transposition of early veins,and(5) high strain and late veins parallel to axial planar foliations(axial planar foliation-related veins).The axial planar geometry is achieved through variable amounts of progressive rotational strain,except in model 5,in which the co-planarity is acquired at the time of vein intrusion.The possibility for axial-planar veins to have developed in two distinct phases in the context of polyphase or polyorogenic tectonics has also been explored and discussed.This study contributes to a better understanding of the intriguing interplays between deformation,metamorphic and magmatic processes in orogenic belts.  相似文献   
16.
中天山地块南缘两类混合岩的成因及其地质意义   总被引:1,自引:1,他引:0  
王信水  江拓  高俊  高强  李继磊  张喜 《岩石学报》2019,35(10):3233-3261
中天山地块是位于中亚造山带西南缘的西天山造山带的重要组成块体,其基底演化和构造亲缘性对恢复西天山的增生造山方式和大地构造格局具有重要意义。混合岩在中天山地块的高级变质地体中广泛分布,是揭示中天山地块基底演化和构造属性的窗口。本文通过开展锆石U-Pb年代学和Hf同位素及岩石地球化学研究,确定了中天山地块南缘乌瓦门杂岩的两类条带状混合岩的原岩性质和形成时代以及混合岩化作用时代和成因机制。第一类条带状混合岩的原岩为中基性岩屑砂岩,混合岩化时代为~1. 8Ga,是在同期角闪岩相变质过程中通过变质分异形成的。第二类条带状混合岩的古成体包括黑云角闪斜长片麻岩和黑云斜长角闪片麻岩,原岩均形成于~2. 5Ga,并叠加~1. 8Ga角闪岩相变质作用,是洋陆俯冲背景下由俯冲洋壳或岩石圈地幔部分熔融形成。侵入古成体的变基性岩墙形成于~1. 72Ga,具有Fe-Ti玄武岩的地球化学特征,起源于后碰撞伸展背景下的软流圈地幔。该类混合岩的浅色体同时穿插古成体和变基性岩墙,呈现突变的野外接触关系,与区域内约787~785Ma混合岩化同期,即混合岩化作用是外来岩浆注入的结果,可能是造山带垮塌引发地壳深熔作用的产物。乌瓦门杂岩记录的~2. 5Ga岩浆活动、~1. 8Ga变质作用和~790Ma混合岩化作用可以和塔里木北缘进行对比,暗示中天山地块是一个具有确切新太古代-古元古代结晶基底的微陆块,并且和塔里木克拉通存在构造亲缘性。  相似文献   
17.
本文选取闽西北前寒武纪变质基底中的混合岩和花岗岩为研究对象,以探讨两者之间的成因联系.详细的岩石学和主量、微量元素地球化学以及锆石U-Pb年代学研究表明,闽西北混合岩是同变形地壳深熔作用的产物,基底变质岩中的黑云母在较低温(约800℃)、H2O不饱和的条件下发生脱水熔融反应产生熔体,构造变形作用在熔体的分离和迁移过程中起到了重要作用.闽西北基底变质岩可能为形成混合岩和花岗岩的源岩,其深熔产生的初始熔体发生结晶分异作用,堆晶产物形成了混合岩的浅色体,而残余熔体继续演化形成花岗岩.混合岩和相关花岗岩形成基本同时,其成岩年龄为437~441Ma.它们均为华南加里东期构造热事件的产物.  相似文献   
18.
A detailed geochemical and geochronological study of anatectic migmatites from the Namche Barwa Massif (NBM), southern Tibet, has been carried out to place important constraints on the thermal and tectonic evolution of the eastern Himalayan syntaxis. SHRIMP zircon U/Pb dating indicates that the granulite-facies metapelite underwent metamorphism at 21.8 ± 0.7 Ma and 24.5 ± 0.7 Ma, respectively. The latter is similar to the timing of partial melting and the formation of Ca-rich leucosomes at ~ 24-25 Ma. These leucosomes are characterized by (1) high CaO, Na2O, and Na/K ratios; (2) radiogenic Sr (87Sr/86Sr(t) = 0.7407-0.7904) but unradiogenic Nd (εNd(t) = − 7.0 to − 21.2) isotope compositions; (3) depleted HFSE, and (3) variable but depleted HREE relative to their host pelites. Some of the leucosomes show large degrees of Nd isotopic disequilibrium, up to 10 epsilon units with respect to their hosts. These high CaO and Na2O leucosomes were derived from fluxing melting of metapelite at high pressures. A similar process could have operated during the formation of the Himalayan leucogranites and contributes to the heterogeneities in such granites.  相似文献   
19.
哈达特陶勒盖铅锌矿床成矿物理化学条件研究   总被引:1,自引:0,他引:1  
哈达特陶勒盖铅锌矿床处于华北板块与西伯利亚板块交汇部位,是二连浩特-东乌旗多金属成矿带中新发现的一个中型铅锌矿床.本文在野外地质工作基础上,通过流体包裹体,氢、氧、硫和铅同位素的研究,深入探讨哈达特陶勒盖铅锌矿床形成机制.流体包裹体研究显示,均一温度介于195~408℃之间,均值为332.5℃;盐度介于1.40%~11.93% NaCleq.之间,均值为4.87%NaCleq.;流体密度介于0.609~0.890 g/cm3之间,均值为0.720 g/cm3;温度直方图显示,流体呈350~370℃和230~250℃两个峰值,其中230~250℃与成矿密切相关,350~370℃则代表成矿早期流体温度.流体形成压力约13.0MPa,推测深度约1.3 km.激光拉曼测试结果显示,成矿流体属H2O-NaCl体系,含有少量的CO2.H、O同位素研究显示,流体演化成矿主要为岩浆水和大气水混合作用;矿石硫、铅同位素组成具有变化范围窄、相对均一的特点(δ34S=4.0‰~6.1‰,206 Pb/204 Pb=18.311~18.467,207 Pb/254 Pb=15.590~15.636,208Pb/204 Pb=38.253~38.393),反映了成矿物质主要来源于岩浆.上述研究表明哈达特陶勒盖铅锌矿属于浅成中温热液矿床.  相似文献   
20.
Orogenic collapse involves extension and thinning of thick and hot (partially molten) crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. Two-dimensional thermo-mechanical Ellipsis models evaluate the parameters that likely control the formation and evolution of MCC: the nature and geometry of the heterogeneity that localizes MCC, the presence/absence of a partially molten layer in the lower crust, and the rate of extension. When the localizing heterogeneity is a normal fault in the upper crust, the migmatite core remains in the footwall of the fault, resulting in an asymmetric MCC; if the localizing heterogeneity is point like region within the upper crust, the MCC remains symmetric throughout its development. Therefore, asymmetrically located migmatite domes likely reflect the dip of the original normal fault system that generated the MCC. Modeling of a severe viscosity drop owing to the presence of a partially molten layer, compared to a crust with no melt, demonstrates that the presence of melt slightly enhances upward advection of material and heat. Our experiments show that, when associated with boundary-driven extension, far-field horizontal extension provides space for the domes. Therefore, the buoyancy of migmatite cores contributes little to the outer envelope of metamorphic core complexes, although it may play a significant role in the internal dynamics of the partially molten layer. The presence of melt also favors heterogeneous bulk pure shear of the dome as opposed to the bulk simple shear, which dominates in melt-absent experiments. Melt presence affects the shape of P-T-t paths only slightly for material located near the top of the low-viscosity layer but leads to more complex flow paths for material inside the layer. The effect of extension rate is significant: at high extension rate (cm yr− 1 in the core complex region), partially molten crust crystallizes and cools along a high geothermal gradient (35 to 65 °C km− 1); material remains partially molten in the dome during ascent. At low strain rate (mm yr 1 in the core complex region), the partially molten crust crystallizes at high pressure; this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20 to 35 °C km− 1) during ascent. Therefore, the models predict distinct crystallization versus exhumation histories of migmatite cores as a function of extensional strain rates. The Shuswap metamorphic core complex (British Columbia, Canada) exemplifies a metamorphic core complex in which an asymmetric, detachment-controlled migmatite dome records rapid exhumation and cooling likely related to faster rates of extension. In contrast the Ruby Mountain-East Humboldt Ranges (Nevada, U.S.A.) exhibits characteristics associated with slower metamorphic core complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号